Forum

Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
benedetton-votailprof
Salve a tutti. Sto svolgendo degli esercizi per un esame di geometria differenziale e ne ho trovato due che proprio non riesco a risolvere, ve li scrivo di seguito. Esercizio 1: Verificare che \[ X^{-1}_JX = \begin{pmatrix} z^1_1 & \dots & z^{i-1}_1 & 1 & z^{i+1}_1 & \dots & z^{j-1}_1 & 0 & z^{j+1}_1 & \dots & z^n_1 \\ z^1_2 & \dots & z^{i-1}_2 & 0 & z^{i+1}_2 & \dots & z^{j-1}_2 & 1 & z^{j+1}_2 & \dots & z^n_2 \end{pmatrix} \] dove \(X^{-1}_J\) è l'inversa della sottomatrice di X individuata ...

stelladinatale1
Salve a tutti. Perchè se ho $M$ campo di spezzamento posso dire che l'estensione $M:\mathbb{Q}$ è separabile e quindi normale? Sulla normalità non c'è problema in quanto ho un teorema che me lo garantisce, ma non riesco a capire perchè quell'estensione è separabile. Grazie a tutti

cuomo paolo
ho scaricato da gamestorrents prince of persia the forgottens sands l'ho fatto scaricare con utorrent dopo aver fatto ho fatto altre robe l'ho installato poi mi chiede la password mi sono registrato su ubisoft account e ho messo la password per accedere al gioco ma mi dice questo gioco nn supporta l'accesso ofline!!! ragazzi mi serve il vostro aiuto perché sto per esplodere!!!!!!!!!!!!!!
4
23 lug 2012, 12:17

Musicam
Salve, per trovare la comune perpendicolare di due rette: mi ricavo i vettori direttori di esse e ne faccio il loro prodotto vettoriale... è giusto come procedimento?? vale x tutti i tipi di rette?
5
23 lug 2012, 17:16

djdavi99
traduzione delle seguenti pagine
3
22 lug 2012, 11:56

finfinityf
mi date le soluzioni del libro survival guide 2 perfavore entro settembre 2012 !!grazie
2
22 lug 2012, 08:27

SerialKinder=)
Questo topic è stato aperto per avere le vostre opinioni sulla crisi economica... Quest' ultima vi fa rinunciare alle vostre vacanze?
11
20 lug 2012, 23:20

93felipe
non riesco a capire perchè nel moto armonico il vettore accelerazione del punto q è sempre discorde al vettore spostamento del punto q, non dovrebbero essere concordi dato che facendo ruotare il punto materiale p in senso antiorario il punto q si sposterebbe verso destra? guardate la foto, non riesco a capire

ingegnè
Buonasera a tutti, avrei delle domande da porvi: 1) Cos'è uno spazio affine? ed un sottospazio affine? 2)Cos'è un riferimento affine? Grazie!
3
23 lug 2012, 16:36

matitti
Ho una matrice $6x6$ di cui ho calcolato gli autovalori, che sono: $0$ con molteplicità $4$ $i sqrt(5)$ con molteplicità $1$ $-i sqrt(5)$ con molteplicità $1$ come viene la forma canonica di jordan?
14
18 lug 2012, 09:27

x4ntu5
Ciao, ho un dubbio riguardante il seguente esercizio: Si consideri la forma quadratica $q(x, y)=x^2+4y^2+4xy$. Determinare la matrice $M$ invertibile 2x2 tale che $((x'),(y'))=Mcdot((x),(y))$. Ho calcolato la forma canonica $q(x', y')$, considerando la matrice $A=((1, 2),(2, 4))$ associata a $q(x, y)$ nella base standard di $mathbb{R^2}$. Poi ho calcolato i suoi autovalori: $mathbb{p}_A(lambda)=lambda^2-5lambda=lambda(lambda-5)=0Leftrightarrowlambda=0veelambda=5$; $q(x', y')=0x'^2+5y'^2$ $Rightarrow$ $q$ semidefinita positiva. Per ...
3
23 lug 2012, 00:07

totoedrm
Salve, oggi mi sono ritrovato a risolvere un esercizio in cui dovevo calcolare il residuo della funzione \(\displaystyle \frac{e^\frac{1}{z^2}}{z^2+7} \) Il mio professore dice che oltre ai due poli c'è anche una singolarità essenziale nel punto z = 0. Ma in quel punto la funzione non tende a infinito e quindi è un altro polo?
8
20 lug 2012, 16:48

Kashaman
Forse, post più banale non ci può essere. Tuttavia , da tempo ho sempre avuto alcuni dubbi su sta' cosa banale. Il concetto di omomorfismo penso di averlo ben presente, ma trovarlo con mano ho qualche perplessità. L'esercizio recita cosi. Siano $G_1={e,a,b,c}$ ,$G_2={e',a',b',c'}$ gruppi con le seguenti tabelle moltiplicative . Per $G_1$ $ ( ( X_(G_1) , e , a , b , c ),( e , e ,a ,b , c ),( a , a , e , a , b ),( b , b ,c , e , a ),( c , c , b , a , e ) ) $ Per $G_2$ $ ( ( X_(G_2) , e' , a' , b' , c' ),( e' , e' ,a' ,b' , c' ),( a' , a' , b' , c' , e' ),( b' , b' ,c' , e' , a' ),( c' , c' , e' , a' , b' ) ) $. Trovare tutti gli omomorfismi $f : G_1 -> G_2$ con i loro nuclei. svolgimento : Devo ...

Sk_Anonymous
Probabilmente sto andando a chiedere un boiata; però vabhè, al massimo mi linciate e io me ne vado con la coda tra le gambe La definizione di limite che ho studiato nella seconda parte del corso di Analisi I è la seguente: Sia \(\displaystyle f:D \subset \mathbb{R} \to \mathbb{R} \), \(\displaystyle x_{0} \in \text{Acc}(D) \). Diciamo che \[\displaystyle \exists \ \lim_{x \to x_{0}} f(x)=l \in \mathbb{R} \cup \{ \pm \infty\} \] se \[\displaystyle \forall (x_{n}) \subset D \setminus \{x_{0} ...

starbike
Salve a tutti, In una funzione a una variabile so che se la funzione è derivabile in un punto allora è continua in quel punto, ora nelle funzioni a più variabili se una funzione è derivabile in un vettore x allora è continua in quel vettore MA se una funzione è derivabile in un punto allora non è detto che sia continua in quel punto. Perchè?
7
23 lug 2012, 12:40

Sk_Anonymous
Non sono certo circa lo svolgimento del seguente: Sia \(\displaystyle k \in \mathcal{C}(\mathbb{R}) \), \(\displaystyle k \ge 0 \) e tale che \[\displaystyle \int^{+\infty}_{-\infty} k(x) \; dx=1 \] i) Calcolare \(\displaystyle \int^{+\infty}_{-\infty} nk(nx) \; dx \); ii) Mostrare che per ogni funzione \(\displaystyle f \in \mathcal{C}(\mathbb{R}) \), limitata su \(\displaystyle \mathbb{R} \) e assolutamente integrabile su \(\displaystyle \mathbb{R} \) si ha \[\displaystyle \lim_{n \to ...

starbike
Avrei una domanda che mi turba da ore -.- Allo scritto di analisi 2 avevo un esercizio : Stabilire se una funzione è differenziabile in un punto P utilizzando un versore non nullo v=(A,B) Non sono riuscita a svolgerlo e sicuramente all'orale me lo chiederà, come aiuto mi disse che c'è un teorema che tramite il calcolo della derivata direzionale nella direzione v=(A,B) capisco se la funzione è differenziabile o meno....non è il teorema del differenziale totale e neanche tramite il limite del ...
7
23 lug 2012, 17:50

al_turing
Ciao ragazzi sto facendo questo problema matematico Una vasca a forma di parallelepipedo ha per base un rettangolo avente le dimensioni di 25 cm e 10 cm. Se nella vasca vengono versati 2500 litri di acqua, a quale altezza arriverà l'acqua?[*] Ho fatto il calcolo per conto mio. quindi trovo la superficie del rettangolo calcolando bxh. Quindi 25x10=250 dopo di che calcolo 2500/250=10 risultato = 10.+ è corretto?
1
23 lug 2012, 18:58

gcappellotto
Salve a tutti propongo il seguente esercizio: siano $a,b,c \in N^{*}$ con $a$ primo rispetto a $b$; dimostrare che $a|(bc) \Rightarrow a|c$ la mia soluzione (troppo banale..): $a$ e $b$ sono primi fra loro di conseguenza $a$ non divide $b$, quindi deve essere $a|c$. Gradirei qualche indicazione, se possibile. Grazie e saluti Giovanni C.

mirk95
Ancora analitica..... Miglior risposta
ciao a tutti.. in questo problema non riesco neppure a decifrare il testo.. Mi potete aiutare a capirlo?? Eccolo: Un punto P(x;y) si muove nel piano in modo che la sua distanza dal punto A(2;3) rimane i 3/5 della sua distanza dalla retta y=25/3. Quale curva descrive P nel suo moto e quali sono le sue caratteristiche? Disegna la curva e trova le due tangenti nei punti d'intersezione con l'asse x. Trova le equazioni della dilatazione che trasformano la curva in una circonferenza che ha il ...
2
20 lug 2012, 19:04