Forum
Domande e risposte su qualsiasi materia per scuole medie, superiori e università da parte della community di studenti.
Domande e risposte
Ordina per
In evidenza
Credo di commettere qualche errore con i segni in questa equazione di secondo grado ma non riesco a capire dove sbaglio. Potreste correggere l'errore?
[tex]\frac{x-(a+4)}{x^2+2ax-3a^2}-\frac{a+x}{a^2x-ax^2}=(\frac{3}{ax}-\frac{1}{a^2})^2:\frac{x^2-9a^2}{a^3x}[/tex]
Qui faccio il primo cambio di segno alla seconda frazione per poter raccogliere al denominatore (x-a)
[tex]\frac{x-a-4}{(x+3a)(x-a)}+\frac{a+x}{ax(x-a)}=(\frac{3a-x}{a^2x})^2\frac{a^3x}{(x-3a)(x+3a)}[/tex]
Altro cambio di segno al ...
Avrei 2 problemi sulla dilatazione termica!!
Miglior risposta
1) un gas perfetto ha una pressione iniziale di 300kpa, volume iniziale 5L e temperatura iniziale 40'C (stato a).
Un'espansione isoterma lo porta a triplicare il volume (stato b. Una compressione isoterma lo porta allo stato D volume 5L e passione 250 kpa. Determina il valore di p,v,t nei vari stati.
2) Un recipiente cilindrico la cui sezione ha area a è chiuso da un pistone a tenuta libero di muoversi verticalmente e contiene un gas perfetto. Inizialmente la temperatura del sistema è di 20'C ...
salve, ho frequentato il primo anno di liceo scientifico, ma ora vorrei trasferirmi in un liceo linguistico. Ho già fatto la domana, ma aspetto ancora la risposta dato che l'ho fatta verso fine luglio-inizio agosto
Ciao, vorrei sapere se ci sono scuole superiori con classi quadriennali nella provincia di Bari e dintorni
Ciao ragazzi...
Mi sono imbattuto in un problema a cui onestamente non sono in grado di dare una risposta esauriente. Eccolo:
Sia dato il seguente sistema di equazioni differenziali in $R^2$:
\(\begin{equation}
\begin{cases}
\dot{x_1}=\alpha\\ \dot{x_2}=\beta
\end{cases}
\end{equation}\) \(\hspace{1cm }\) con $\alpha$ e $\beta$ \(\in \) $R$.
a) Determinare la traiettoria e gli eventuali punti fissi.
b) Studiare lo stesso sistema su ...
Buonasera a tutti.
Andrò dritto al punto: sono l'ennesimo caso di un ingegnere la cui vera passione è però rivolta alla fisica pura.
Mi è sempre interessata tutta la fisica in generale, fin da bambino. Però, tutta la pressione che in quinta superiore ci mettevano addosso sul futuro lavorativo (che ovviamente potrebbe essere non dei migliori per un ricercatore) mi ha spinto a iscrivermi a una triennale in ingegneria. Comunque, dato che uno degli argomenti che più mi affascinavano era la sfida ...
Buonasera,
è un po' che sto su questo problema ma c'è un segno che non mi quadra e vorrei capire dove sbaglio (soprattutto se ho sbagliato qualche termine in un'equazione)
Testo: Un oggetto di forma cubica e massa m = 2 kg è collegato tramite una sbarretta rigida di massa trascurabile all'asse di un cilindro di massa M = 3 kg. Entrambi gli oggetti sono vincolati a muoversi su un piano inclinato di un angolo θ = 30 gradi. Sia 0,3 il coefficiente di attrito dinamico μ tra cubo e piano e si ...
Ciao ragazzi
come da titolo volevo chiedervi un chiarimento riguardo le derivate parziali:
supponiamo io voglia calcolare la derivata parziale rispetto la direzione dell'asse x. Per dire che è continua in un punto bisogna calcolare il limite del rapporto incrementale sia a destra che a sinistra del punto e verificare che coincidano i valori? L'aver verificato questa cosa mi porta anche a dire che effettivamente esistono nel punto?
Vi ringrazio
Salve,
in un esercizio dopo aver fattorizzato una matrice A con il metodo Gauss con pivoting è richiesto di calcolare il determinante di $ A^(1/2) $ . In generale quando è richiesto il calcolo del determinante di A lo calcolo in questo modo: $ det(A) = det(P)*det(L)*det(U) $, dove P è una matrice di permutazione elementare, L è una matrice triangolare inferiore con valori unitari sulla diagonale e U è una matrice triangolare superiore. Come posso calcolare il determinante di $ A^(1/2) $ sfruttando ...
Questo limite mi sta facendo un po' impazzire
\(\displaystyle \lim_{x\to \infty} [x^2 cos(\frac{5}{x}) - x(x-1)e^{\frac{1}{x}}]\)
Ho provato a mettere in evidenza \(\displaystyle x^2 \) ma non sono arrivato ad una conclusione. Consigli?
Buonasera ragazzi, vorrei capire se ho svolto bene questa serie.
\(\displaystyle \sum_{n=1}^\infty \frac{3^n+ n^{10} }{√(n!)}\)
Essendo una serie a termini positivi, è regolare, di conseguenza divergerà o convergerà.
Calcolando il limite per \(\displaystyle n\rightarrow \infty \) del termine generale ottengo 0, per cui passo al criterio del rapporto:
\(\displaystyle \lim_{n\rightarrow \infty} \frac {3^{n+1}+(n+1)^{10}}{√(n+1)!} \frac {√(n!)}{3^{n}+(n)^{10}}=\lim_{n\rightarrow \infty} ...
Dunque questo è un esercizio di un tema d'esame di cui non ho la soluzione...
Chiede per quali valore del parametro $alpha$ il seguente integrale converge:
$ int_(0)^(+oo ) e^(2alpha t^2)/(root(3)(t^3+t)) dt $
L'integranda è continua in $(0;+oo)$.
Ora, per $t->0$, mi viene $2alpha * 1/(t^(-5/3))$, usando l'asintotico di $e^x - 1 ~ x$, perciò dovrebbe convergere per confronto asintotico con la serie armonica $1/(x^y)$ con $y < 1$, per qualsiasi $alpha$?
Per ...
Ciao a tutti, sto provando a risolvere questo esercizio senza però arrivare a nessuna conclusione. C'è qualcuno di buon cuore che riesca a spiegarmi come si fa?? Grazie mille in anticipo a chi mi risponderà
"Studiare l'andamento qualitativo delle soluzioni del problema di cauchy $ { ( y'=y(y-1)^(1/3)),( y(0)=k ):} $ "
Salve Ragazzi,
Vi chiedo un piccolo aiuto, mi sapreste spiegare i 3 algortimi che ho indicato nel titolo..
Vi inserisco anche i codici che ho:
insertion:
For(int i=0; i= 0 && v[j]>x; j++)
{
v[j+1]=v[j];
v[j+1]=x
}}
Selection:
For(int i=0; i
Disequazone logartmica 2
Miglior risposta
Disequazone logartmica 2
[math]\frac{log_2(4^{x+1}-2)-2x}{(2x+1)}\le 1[/math]
Sia $G$ un gruppo e $H$ e $K$ due sottogruppi tali che: $|G:H|=|G:K|=t$ con $t$ numero naturale e $H<=K<=G$ si può dire che $H$ e $K$ sono uguali?
Salve ragazzi, ho un piccolo dubbio, sto cercando di studiare il carattere di questa serie
\(\displaystyle \sum((1-1/n^3)*n^3) \)
ho fatto il limite con n->+infinity di questa funzione e ho trovato come risultato + infinty, quindi concluderei che la serie diverge, ma non sono sicuro che la risoluzione di questo esercizio è così "banale"qualcuno potrebbe confermare/smentire quello che ho scritto? grazie
Testo:
Un corpo puntiforme di massa $ m = 4 kg$ si trova in equilibrio statico sul pianale liscio di un carrello ad una distanza $d = 0.9 m$ dall’estremità libera di una molla ideale, disposta in configurazione orizzontale e avente l’altra estremità vincolata al punto O solidale al carrello.
Il carrello è a sua volta in quiete sul piano orizzontale e la molla ha costante elastica $k = 196 Nm−1$ lunghezza a riposo $l_0 = 0.5 m.$
Ad un certo istante il carrello viene messo in ...
Ho tre lastre conduttrici di cui la prima, a sinistra, con carica Q e le altre due, a destra, scariche.
Che carica (e che densità di carica superficiale) comparirà nelle due lastre?
Io ho supposto che restino comunque scariche e che le densita` superficiali delle lastre scariche siano nulle. Ma penso che sia una conclusione sbagliata
Ciao a tutti volevo chiedervi se riuscite a spiegarmi un passaggio di una parte di un esempio. L'esempio lo allego come immagine e sono poche righe (non lo ho postato tutto). E' abbastanza urgente quindi se riuscite a farmi capire questo passaggio ve ne sono molto grato. Si ha un sistema di equazioni differenziali
$$\begin{cases} \dot{x} = u^2 - y^2 & {} \\ \dot{y} = u & {} \end{cases} \qquad u:=u(t) \in [-1,1]. $$
Consideriamo le soluzioni con dato iniziale ...