Statistica e Probabilità
Questioni di statistica, calcolo delle probabilità, calcolo combinatorio
Domande e risposte
Ordina per
In evidenza


Se in una scatola ci sono 12 blocchi rossi e 20 blocchi gialli, qual è la probabilità di estrarre, in qualsiasi ordine, 2 blocchi rossi e uno giallo?
Ho risolto il problema ma non sono sicuro sia corretto e non ho la soluzione.
$P=\frac{\text{casi favorevoli}}{\text{casi totali}}$.
Ci sono 1140 modi di estrarre 3 blocchi dai venti che abbiamo, i casi favorevoli sono 528. Quindi $P=46%$.
è corretto?
Salve, non riesco a venire a capo di questo problema.
Due amanti si accordano per incontrarsi dopo le 24:00. Lui arriva $X$ minuti dopo le 24 dove $X ~ ([0,3])$, mentre lei arriva Y minuti dopo le 24 dove $Y ~ U([0,5])$. Qual è la probabilità che lui debba aspettare lei?
Non riesco a capire se devo trattare $X$ e $Y$ come due distribuzioni differenti o se le devo trattare come una distribuzione congiunta. Inoltre non capisco se calcolare ...

Buonasera a tutti,
mi è stato assegnato il seguente esercizio di probabilità:
Sia dato un periodo di $n$ giorni in cui per ogni giorno $1 \leq i \leq n$ nevichi con una certa probabilità $p_i$. È dato anche un certo valore $k$ $(0 \leq k \leq n)$. Calcolare la probabilità che degli $n$ giorni, nevichi almeno $k$ giorni.
Dare il valore nel caso in cui $n = 10, k=5$ e $p<em> = [0.65, 0.47, 0.72, 0.22, 0.79, 0.26, 0.23, 0.28, 0.72, 0.93<br />
]$.
Ho pensato di impostare la v.a. ...
Consideriamo le formule in Fig. 1 di questo articolo: https://arxiv.org/abs/1712.01406.
Queste due formule vengono ottenute senza ipotesi sul rumore di processo. Successivamente, ancora senza fare ipotesi sul rumore di processo, l'autore arriva alla formula (5), in cui compare la densità di probabilità $p(x_k|x_{k−1})$. Tenendo in conto la prima equazione del sistema (1), lui afferma che se supponiamo rumore di processo gaussiano e bianco, allora possiamo scrivere la forma di tale densità di probabilità ...

Buongiorno a tutti,
mi servirebbe una mano a calcolare la potenza del processo aleatorio $ x(t)=A\cos(2\pift+\phi) $ dove A e $\phi$ sono deterministici mentre f è una variabile aleatoria uniforme in [0,4000].
In particolare dovrei calcolarla usando l'autocorrelazione in 0 dove per autocorrelazione, questa è la definizione che ci è stata data, s'intende la media temporale della media statistica, ovvero
$r(\tau)=\lim_{T\to\infty} 1/T \int_{-T/2}^{T/2}E{x(t)x(t-\tau)}dt$
Credo di aver svolto correttamente l'operazione di valor medio ...

Una segretaria ha finito di scrivere una pila di N lettere, e ha appena compilato le buste con gli indirizzi, quando tutto il materiale le cade per terra e si mischia. Se si inseriscono le lettere nelle buste in maniera del tutto casuale (nel senso che ciascuna lettera può finire in ogni busta con pari probabilità), qual è il numero medio di lettere che capitano nella busta corretta?
Salve, ho questo esercizio, è corretto rispondere che la media è 1, in quanto si hanno n lettere ognuna con ...
Salve a tutti, sono alle prese con un problema di probabilità ma non riesco a risolverlo. Ci ho pensato un po' ma non penso che la distribuzione geometrica o la ipergeometrica siano adatte a questo problema.
"In un urna abbiamo 3 palline rosse e 2 bianche. Si vogliono dividere le palline rosse da quelle bianche e per farlo si estraggono le palline una alla volta e il procedimento è concluso quando abbiamo trovato le 3 palline rosse. Definita $X$ la variabile aleatoria che conta ...

Dall'esperienza passata si sa che ad un esame, con valutazione in centesimi, il punteggio è una variabile aleatoria di media 75 e varianza 25.
a) Che cosa si può dire sulla probabilità che uno studente ottenga un punteggio compreso tra
65 e 85?
b) Quanti studenti devono sostenere l'esame affinché vi sia una probabilità almeno di 0,9 che
la media dei punteggi della sessione non disti più di 5 da 75?
Salve, per il primo punto ho applicato la disuguaglianza di Chebychev, mentre per il secondo ...

Buongiorno a tutti,
sono ore che cerco di risolvere il seguente problema senza arrivare a una soluzione.
"Alla mensa universitaria vengono proposti $n$ piatti differenti. Il piatto 1 può essere acquistato infinite volte, mentre i piatti $2, \ldots, n$ possono essere acquistati una sola volta ciascuno. Gli studenti formano un'unica coda e possono scegliere tra i piatti rimasti (il piatto 1 non termina mai)."
Ogni piatto $i = 1, \ldots, n$ ha un coefficiente ...

Sto cercando di capire di più di questo argomento che è veramente ostico per me
Ho trovato un po' di esercizi in giro e questo non mi torna
There are two identical urns containing respectively 6 black and 4 red balls, 2 black and 2 red balls. An urn is chosen at random and a ball is drawn from it. (i) find the probability that the ball is black (ii) if the ball is black, what is the probability that it is from the first urn?
La prima domanda mi viene 11/20 come da soluzione
La seconda ...
Ciao a tutti, vi chiedo un aiuto per questo esercizio a scelta multipla che non riesco a risolvere. La mia unica idea è stata quella di usare Bayes e la probabilità condizionata, ma rimangono sempre le incognite delle. probabilità di $A$ e $B$ che non saprei come calcolare, nè se serva effettivamente farlo. L'esercizio è il seguente:
Siano $A$ e $B$ due eventi. Se $ P (A|B)=2/7 $ e $ P (B|A)=2/3 $ allora $ P (A nn B)= $ :
A) ...

Buongiorno, ho questo problema:
"Siano $X$ e $Y$ due variabili casuali indipendenti di distribuzione di Poisson con
parametri $\lambda$ e $\mu$.
(a) Mostra che la variabile casuale $X + Y$ ha la distribuzione di Poisson con parametro $\lambda+ \mu$.
(b) Calcolare la distribuzione condizionata $P(X = k | X + Y = n)$ dato che $X +<br />
Y = n$, per tutti $k, n \in \mathbb{N}$
(c) Si supponga che i rispettivi parametri delle distribuzioni di ...

Paola, il pomeriggio, è solita chiamare due sue amiche, Maria e Luisa, che non sempre però le rispondono. La probabilità che Maria le risponda è del 25% e la probabilità che Luisa le risponda è del 50%. Inoltre, la probabilità che Maria o Luisa le rispondano è una volta e mezza la probabilità che non le risponda nessuna delle due. Qual è la probabilità che sia Maria sia Luisa rispondano alla telefonata di Paola?
Salve a tutti io ho impostato cosi ma non mi torna perchè ...
Buongiorno a tutti, sono nuovo nel forum quindi mi scuso in anticipo nel caso dovessi violare qualche regola.
Sono alle prese con un problema a cui non riesco a venire a capo. La domanda è la seguente:
Sia $ X $ un numero aleatorio continuo positivo con funzione di densità $ f(x) $ tale che $ int_(0)^(+\infty) f(x) dx=1 $ . Se $ E(X)=int_(0)^(1) xf(x) dx=1/5 $ allora quanto vale $ P(X>1) $? .
La soluzione al problema è 0.
L'unica cosa a cui ho pensato è che una ...

Un segnale binario può assumere solo due stati (0 o 1). Un segnale emesso come 0 attraversa due successivi ca nali di trasmissione, prima di essere ricevuto. In ciascun canale, il segnale viene trasmesso correttamente con una probabilità del 95%, altrimenti si verifica un errore che comporta un'inversione del segnale (se era 0 diventa 1 e vice versa). Supponi che gli eventuali errori di trasmissione che si verificano nei due canali siano indipendenti.
a. Determina la probabilità che il segnale ...

Salve, ho questo problema:” 3 persone (A,B e C) hanno 12 funghi, di cui 4 velenosi. A ne mangia 7, B 4 e C 1.
Calcolare la probabilità che A e B si avvelenino; calcolare la probabilità che A e B si avvelenino, dato che C non si è avvelenato; calcolare la probabilità che tutti si avvelenino “.
Io ho pensato per il primo di usare la formula probabilità dell’intersezione uguale al prodotto della probabilità che A si avveleni e che B si avveleni dato che si è avvelenato A. È corretto?
Come procedo ...

Ciao a tutti, vorrei confrontarmi sullo svolgimento del seguente esercizio:
Un aereo mantiene la propria altitudine con un errore sistematico (o medio) di +20m ed uno casuale caratterizzato da uno scarto tipo di 50m. Avendo un corridoio di volo alto 100m, con quale probabilità riuscirà a starci dentro nell’ipotesi che la traiettoria impostata è quella al centro dell’altezza del corridoio?
Molto semplicemente, ho considerato $\mu = 20 \text{m}$ e $\sigma = 50 \text{m}$, per poi trovare la probabilità ...

Ciao,
leggo "la distribuzione esponenziale è chiusa rispetto a cambiamenti di scala" e riportano come esempio:
$Y ~ Esp(lambda)" quindi "T = bY ~ Esp(lambda/b), b > 0$
Riuscireste a spiegarmi cosa si intende con la dicitura "è chiusa"? Nel senso che è invariante, cioè che resta comunque una esponenziale?
Senza dimostrazioni complicate che purtroppo non mi aiuterebbero, riuscite a darmi una mano su come lo si dimostra? Ho un vago ricordo, cioè che moltiplicando la densità di una delle due per $1/sigma$ e calcolandola per ...

Salve, ho questo problema: “ci sono 10 palline numerate da 1 a 10, ne estraggo 3, calcolare la probabilità che siano in ordine “ crescente.
Come potrei procedere?
Al denominatore avrò sicuramente $(10!)/(7!)$ ovvero le distribuzione di 10 elementi per i 3 posti.
Come calcolo il numeratore?
Grazie