Analisi matematica di base
Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui
Domande e risposte
Ordina per
In evidenza
Aiuto con i limiti di una funzione
Miglior risposta
Ciao a tutti!
Mi stavo esercitando per l'esame di Analisi Matematica, e mi ero imbattuto in questa cosa qui:
https://imgur.com/a/GYwkfNA
Non ho la minima idea di come abbia ottenuto il risultato di "+- 5/2". Lo so che, per trovare il limite del asintoto verticale vada usata la formula "lim f(x) + mx = q", però perché la prof usa "- ln(2)x" quando lo fa a PIU' infinito, e "+ ln(2)x" quando lo fa a MENO infinito? Sono confuso!
Per favore aiutatemi! Ho domani l'esame, e le cose per lo più ...
Salve a tutti
[ot]Come state? [/ot]
Come da titolo, sono qui oggi per discutere e/o ricevere consiglio riguardo questa funzione "antipatica".
Ricordo che $ \lfloor x \rfloor = \max \{ n \in \mathbb{Z} | n \leq x \} $.
Il dominio naturale risulta essere:
\[
\mathcal{D} = \mathbb{R} - \{-1 \}
\]
Ora, per quanto ne concerne i limiti, sapendo che $ (-1)^{-x} = (-1)^{x} $, si ha che
\[
- \frac{1}{1+x} \leq \frac{(-1)^{\lfloor x \rfloor}}{1+x} \leq \frac{1}{1+x}
\]
Pertanto, nel calcolo dei limiti, posso sfruttare il teorema dei carabinieri e ...

Trovare due funzioni ad una variabile reale $f(x)$ e $g(x)$, tali che $ \varphi (x) :=f(x)^g(x)$ non sia mai costante e definita in un aperto non vuoto di $ \mathbb R$ e tali che $\lim_{x \rightarrow a} f(x) = \lim_{x \rightarrow a} g(x) = 0$ per un certo $a \in \mathbb R \cup \{ \pm \infty \}$, di modo tale che $\lim_{x \rightarrow a} \varphi (x) = 0$.

Potreste darmi una giustificazione del motivo per il quale le forme
zeroxinfinito, infinito meno infinito ecc... sono indeterminate?
Mi viene posto il quesito seguente:
Sia $ y(t) $ la soluzione del problema di Cauchy seguente:
\[
\begin{cases}
y' = 3 \sin t + y^2 \\
y(0) = \pi
\end{cases}
\]
Vicino al punto $ t = 0 $, $ y(t) $ ha
concavità verso l'alto e retta tangente con pendenza positiva;
concavità verso il basso e retta tangente con pendenza positiva;
concavità verso l'alto e retta tangente con pendenza negativa;
concavità verso il basso e retta tangente con pendenza ...

Salve!
Sono alle prese con questo esercizio, ma non saprei come procedere..-
Dimostrare per induzione che
$ int_(0)^(+oo) x^n*e^(-x) dx = n! $

Ciao a tutti, provo a porre qui la domanda traslandola da geometria ove ho visto che non ha avuto molto seguito . In realtà la sto affrontando in analisi quindi è un discorso un po' borderline. Vediamo...
Volevo potervi chiedere un secondo aiuto su un concetto legato a curve e velocità di percorrenza della curva, mi spiego:
Consideriamo $gamma_1(t) = (cos t; sin t), t in [0; 2pi]$ e definiamo $p : [0; pi] -> [0; 2pi]$,
$p(r) = 2r$, con tale riparametrizzazione ho che $gamma_2(r) = (gamma_1 ◦ p)(r)$, cioè posso scrivere: ...

Buongiorno,
forse la domanda che sto per porvi è un po' stupida ma vorrei esserne sicuro.
Io so che il concetto di asintotico non vale per gli esponenziali, nel senso che, se $f(X)~g(X)$ per $X->X(0)$ ciò non implica che, per esempio $e^f(X)~e^g(X)$ per $X->X(0)$.
Questo però mi fa venire un dubbio su come si possano risolvere i limiti di funzioni esponenziali: so che
$\lim_{X \to \X(0)}e^f(X)$
si può risolvere calcolando prima
$L=\lim_{X \to \X(0)}f(X)$
E dunque la funzione tende a ...

Buonasera,
mi potreste aiutare a risolvere il seguente integrale?
$\intsqrt(1+X^2)dx$
Ho provato mediante la sostituzione $sqrt(1+X^2)=X+T$ e, elevando al quadrato, funziona, mi chiedevo però se c'è un metodo più rapido per risolverlo; ho letto che si può usare il seno iperbolico ma non riesco a risolverlo in questo modo; mi aiutereste?
Grazie mille!

Ciao, ho bisogno di una mano con questo esercizio che mi richiede di trovare l’ordine infinitesimo della funzione:
f(x) = ∛(x+x^2) - ∛(x) + x^2 .
A me esce n=1/3, ma è scorretto. Qualcuno può illuminarmi? Grazie in anticipo!

Ciao a tutti! Non capisco come risolvere il seguente esercizio, potreste aiutarmi? Grazie mille!
TESTO:
Utilizzando opportunamente lo sviluppo in serie di $log(1+X)$ calcolare la somma della serie $\sum_{n=1}^N 1/(n*2^n)$
P.S. Chiaramente con N intendo "+infinito", scusatemi ma non ho capito come fare a scriverlo.

Salve, vorrei porvi un problema di analisi 1 al quale non riesco a rispondere, vi lascio di seguito il testo dell'esercizio.
Data: $ F(x) = int_(1)^(x) (e^t)/(t^5 (2-t))^(1/3) dt $ allora F:
1) è limitata superiormente
2) è limitata inferiormente
3) ha una sella
4) nessuna delle precedenti
Procederei calcolando il dominio della funzione integranda il quale è (- $oo$ ,0) U (0,2) U (2, $oo$ ).
Da qui cercherei di capire se nei punti 2 e 0 l'integrale converge o diverge così da trovare il dominio ...

Buonasera, qualcuno riesce a calcolarmi la derivata rispetto ad a della seguente funzione? grazie mille
(5-2a)exp[-1/4(6a^2-8a+6)

Ciao a tutti, ho un dubbio sulla dimostrazione del seguente teorema: Siano $f:A->B$ e $g:B->C$ e sia $f$ derivabile in $x_0inA$, $g$ derivabile in $y_0=f(x_0)inB$, allora $g(f(x))$ è derivabile in $x_0$ e la sua derivata è $g’(f(x_0))f(x_0)$.
Per dimostrarlo consideriamo il rapporto incrementale $(g(f(x))-g(f(x_0)))/(x-x_0)$ e moltiplichiamo e dividiamo per $f(x)-f(x_0)$ supponendo che $f(x)-f(x_0)$ sia diverso da zero in ...

Ciao a tutti, ho una domanda sul teorema del limite di una funzione composta.
Siano $f(x):A->B$ e $g(x):B->C$, sia $x_0$ punto di accumulazione di $A$ e $y_0=f(x_0)$ punto di accumulazione per $B$. Se $lim_(x->x_0)f(x)=y_0$ e $lim_(y->y_0)g(y)=l$ e se $f(x)$ diverso da $y_0$ in un intorno di $x_0$ allora $lim_(x->x_0)g(f(x))=l$. Non avendo fatto la dimostrazione non capisco perché sia necessaria l’ultima ipotesi, ...
Sto studiando la seguente funzione:
\[
f(x) = \begin{cases}
0 & \text{se } x = 0 \\
\max \left( 0, x^2 \sin \left( \frac{1}{x} \right) \right) & \text{se } x \neq 0
\end{cases}
\]
Scrivendone la legge come una funzione a tratti, ottengo:
\[
f(x) := \begin{cases}
x^2 \sin \left( \frac{1}{x} \right) & \text{se } x^2 \sin \left( \frac{1}{x} \right) > 0 \\
0 & \text{se } x = 0 \vee x^2 \sin \left( \frac{1}{x} \right) < 0\\
\end{cases}
\]
ossia:
\[
f(x) := \begin{cases}
x^2 \sin \left( ...

Ciao a tutti volevo chiedervi se mi sapete dimostrare la seguente proposizione:
Sia $a_n$ una successione, essa converge ad $l$ se e solo se $a_(2k)$ e $a_(2k+1)$ convergono entrambe a $l$
Non riesco a dimostrarla nè verso destra nè verso sinistra.

Buonasera,
mi sto trovando in difficolta con il calcolo del seguente integrale indefinito : $ int cos^2x/(sin(x)+cos(x))^2 dx $.
Sono arrivato a semplificare la funzione integranda fino ad arrivare a $ int cos^2x/(1+sin(2x)) dx $ (il che potrebbe essere sbagliato già da questo punto).
poi sostituendo $ cos^2(x) $ con $ 1-sin^2(x) $, sono arrivato a $ int (1-sin^2(x))/(1+sin(2x)) dx $ .
Tra gli ultimi passaggi che ho fatto, è sostituire $ sin(x)=t $ , $ x=arcsin(t) $ , $ dx=1/(sqrt{1-t^2})dt $ .
Da qui facendo le dovute ...

Buongiorno, vorrei chiarire dei dubbi che ho sulla seguente proposizione: una successione $a_n$ converge ad $l$ se e solo se $a_(2k)$ e $a_(2k+1)$ convergono entrambe ad $l$. A lezione ci è stato detto che se per $n>n_ε$ succede che an cade in un intorno di l, allora prendendo $n=2k+1≥2n_ε+1≥n_ε$ dimostro l’implicazione verso destra ma non ho capito perché.
Mentre per l’implicazione opposta, sapendo che $a_2k$ e ...
