Algebra, logica, teoria dei numeri e matematica discreta
Discussioni su Algebra astratta, Logica Matematica, Teoria dei Numeri, Matematica Discreta, Teoria dei Codici, Algebra degli insiemi finiti, Crittografia.
Domande e risposte
Ordina per
In evidenza
salve,ho trovato questo esercizio sul libro che pero' mi sta dando dei grattacapi,sopratutto perche non c'e' la soluzione
cmq il testo e' questo:
trovare un modo esplicito per enumerare i razionali.
suggerimento:se r=m/n e' razionale positivo, m,n primi fra loro ,definiamo altezza di r il numero intero m+n. Possiamo numerare i razionali cominciando con quelli di altezza 1,2,3 e cosi' via.
alche' ho pensato al metodo utilizzato per enumerare i numeri interi,ovvero porli in ...
non facciamo mai un pò di teoria di Galois.
Mostrare che per ogni gruppo ciclico $C$ (forse si può fare in maniera semplice anche più in generale ma ora non ricordo), esistono due estensioni $E\subsetF$ dei razionali tali che $Gal(F:E)=C$
Che ne pensate della seguente dimostrazione?
Se esiste un numero che non e' prodotto
di primi, allora c’e' il minimo, sia a. Allora a non puo` essere primo e percio' possiamo scrivere a = bc,
con 1 < b < a e 1 < c < a. Ma allora b e c sono prodotto di primi e quindi lo `e anche a:
sia $p$ una proprietà sugli interi positivi. Sia $P(a)$ la probabilità che un intero positivo $a$ verifichi $p$ e sia $N(s)$ il numero degli interi $a\leqs$ che verificano $p$. Dare un esempio di proprietà $p$ tale che $\sum_{k=1}^sP(k)=o(N(s))$.
...
...
magari è più semplice di quello che penso...
3) Mostrare in maniera diretta che l'alterno $A_5$ è semplice e che è l'unico gruppo semplice del suo ordine
Sia $\phi$ la funzione di Eulero, qualcuno sa qualcosa riguardo a $\sum_{k=1}^n1/(\phi(k))$?
Non mi ricordo una cosa:
siano date tre applicazioni $f,g,h$ tali che $f=h°g$ e g è surjettiva. Sia A un sottoinsieme del codominio di f (che è anche il codominio di h). é vero che:
$f°g^{-1}(A)=h(A) ??
Scusate ma in una Tabella di verità, a cosa servono le condizioni di indifferenza in ingresso? Con quelle in uscita vabbè, semplifichi le mappe di Karnaugh, ma quelle in ingresso non ho capito a che scopo sono...
Sia p un primo dispari e d un intero tale che per ogni intero $s>1$ risulta $p^{d^s}\equiv1(d)$. Mostratre che allora la congruenza è verificata anche per s=1.
Sia $n$ un intero positivo, e siano dati $n+1$ interi positivi minori o uguali a $2n$. Dimostrare che tra i numeri dati ne esistono almeno due $a$,$b$ tali che $a|b$.
Un gruppoide si dice con divisione se soddisfa le seguenti condizioni:
1) $ AAx in G, G ** x = G $
2) $ AAy in G, y ** G = G $
Dove * è la legge di composizione binaria.
Come dimostrare che il gruppoide sull'insieme C dei numeri complessi è un gruppoide con divisione?
L'operazione * è così definita: $ x ** y = x^2 - y^2$
Grazie!
Mauro
Mi era stato segnalato il testo di un recente post, che non riesco però a rintracciare sul forum.
Perciò lo ribatto qui, scusandomi se sto generando un doppione (che sarò lieto di eliminare se mi si indicherà il post "perso").
"Ogni punto del reticolo Z x Z è colorato con un colore scelto tra n >= 1 possibili.
Per quali n è sempre possibile determinare 2 punti dello stesso colore tali che la loro distanza sia maggiore di 100 e il segmento che li unisce non contenga altri punti del ...
Se a>1 allora $(a^{m}-1,a^{n}-1)=a^{(m,n)}-1$, con $m,n$ interi positivi e $(*,*)$ massimo comun divisore.
1) Sia $I=(x^2+1,y)$ l'ideale generato da $x^2+1$ e $y$ nel dominio $C[x,y]$. MOstrare che I non è primo e calcolare il quoziente.
2) Sia A un dominio e S una sua parte moltiplicativa (S è chiuso rispetto alla moltiplicazione e $1\inS$). Sia B un altro dominio e f un omorfismo iniettivo da A in B. Definiamo ora ne l prodotto cartesiano AxS la relazione di equivalenza $\rho$ che rende equivalenti due coppie $(a_1,s_1),(a_2,s_2)\inAxS$ sse ...
ciao a tutti ho un problema!!!
ho un esercizio devo trovare tutti gli ideali primi di Q[x] che contengono l'ideale generato da x al cubo cio (x^3).
qualcuno mi può aiutare?????????
grazie a tutti
ciao a tutti mi sapete dire qual è lo spettro di Z (mod n) ????
cioè l anello degli interi modulo n???
per n primo ho che lo spettro è l'ideale del solo 0 .
ma per gli altri n????
io ho pensato che in questo caso sia formato dall'ideale generato da zero e da tutti quegli altri ideali per cui il quoziente di Z(mod n) con tali ideali sia integro cioè solo il caso in cui sia un campo.
ma non so.
mi potete aiutare??????????????
grazie.
ah lo spettro di un anello è l insieme dei suoi ideali ...
ciao.
ho questo problemino da risolvere.
rispetto a quale operazione i punti della circonferenza goniometrica formano un gruppo abeliano?
grazie
Alfi