Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Domande e risposte
Ordina per
In evidenza
Sia $A ∈ M_n(CC)$ una matrice invertibile. Provare che esiste una matrice $B ∈M_n(CC)$ tale che $B^2 = A$.
Io pensato in questa direzione:
Siccome il campo è $CC$ sappiamo che $A$ è jordanizzabile, quindi esiste $HinGL_n(CC)$ tale che $A=H^-1JH$ dove $J$ è la matrice di Jordan che ha sulla diagonale termini diversi da $0$ dato che A è invertibile. Possiamo quindi scrivere cosi $A=(H^-1J^(1/2)H)^2$ dove ...
Ciao a tutti. Perdonate se la domanda è sciocca, ma sto preparando questo esame rapidamente e non ho mai trattato questo argomento in tutta la mia carriera di studente (scarso in matematica).
In particolare non capisco bene cosa possa significare qui "dimostrare" il postulato date le condizioni. Vi propongo il problema, spero potrete aiutarmi.
A e B sono due matrici diagonali con le stesse dimensioni. Dimostrate che il prodotto AB è ancora una matrice diagonale. In che modo si ...
Ecco un nuovo esercizio di topologia, sul grafico di funzioni.
Sia $f:X\to Y$ funzione tra spazi topologici. Indichiamo con $\Gamma_f$ il grafico di $f$ contenuto nel prodotto cartesiano $X\times Y$.
Supponiamo che $X$ sia compatto e di Hausdorff. Dimostrare che se $\Gamma_f$ è compatto, allora $f$ è continua.
Premetto che mi sento particolarmente sciocco, perché ho l'impressione che questo sia un esercizio veramente fesso, ...
Salve a tutti. Sto studiando il rivestimento doppio di $SU(2)$ su $SO(3)$ tramite l'omomorfismo tra gruppi di Lie $\phi : SU(2) -> SO(3)$.
Come dimostro che quest'omomorfismo è suriettivo e 2 a 1? Ovvero che $AARinSO(3)$ avrò che il numero di elementi dati da $\phi^(-1)(R)$ è uguale a 2.
Grazie mille per qualsiasi aiuto offerto.
Buon giorno, sto studiando una dimostrazione che interpreta le parentesi di Lie di due campi vettoriali $[X,Y]$ come limite di \(Y\) lungo la curva integrale di \(X\).
C'è un passaggio che non riesco a capire di tale dimostrazione, precisamente, posto $g$ tale che
$$f(\phi_t(q)-f(q) = t g(t.q)$$
e una volta verificata l'identità
$$g(0,q) = \frac{\partial f(\phi_t(q))-f(q)}{\partial t}$$
dove ...
Salve a tutti. Sto studiando teoria dei gruppi e volevo chiedervi un aiuto nella seguente dimostrazione.
Ogni matrice appartenente a $SU(2)$ può essere scritta nella seguente forma
$M=((\alpha, -\bar \beta),(\beta, \bar \alpha))$ con $\alpha, \beta in CC$ tale che $|\alpha|^2+|\beta|^2=1$.
Dimostrare che ogni matrice appartenente a $SU(2)$ può essere scritta in tale forma per un'$unica$ coppia $(\alpha,\beta)$ che soddisfi la condizione $|\alpha|^2+|\beta|^2=1$.
Come dimostro l'unicità di questa coppia? ...
Buongiorno, stavo risvolgendo un esercizio fatto dal mio professore in aula, ma non mi torna il risultato finale.
La matrice in questione è la seguente:
\begin{align*} A = \begin{pmatrix} 1 & 1 \\ 1 & -1 \\\end{pmatrix} \end{align*}
L'applicazione lineare è: $l_A:\mathbb{R}^2 \to \mathbb{R}^2$
L'esercizio chiede di calcolare gli autospazi.
Calcoliamoci quindi il polinomio caratteristico $P_{l_A} (\lambda) = det(A-\lambda I_2)=$
\begin{align*} = det\begin{pmatrix} 1-\lambda & 1 \\ 1 & -1-\lambda\\ \end{pmatrix} = \lambda^2 -2 ...
Premessa: supponiamo che il campo sia $RR$
Noi sappiamo per certo che due matrici simmetriche sono simili se e solo se hanno stesso polinomio caratteristico. Se consideriamo invece due matrici antisimmetriche di ordine $2$ sappiamo che sono ortogonalmente simili se e solo se sono uguali, mentre se consideriamo due matrici antisimmetriche di ordine $3$ esse sono ortogonalmente simili se e solo se hanno lo stesso polinomio caratteristico. Ora sorge la ...
Sia $f :CC_n->CC_n$ un endomorfismo lineare. Se $ImfsubeIm(f- λI)$ $AAλinCC$ allora $f$ è nilpotente.
Ho provato in questa direzione:
Intanto siccome il campo è $CC$ se $λ_1$ è un autovalore di $f$ allora anche $\bar λ_1$ è un autovalore di $f$.
Supponiamo per assurdo che esiste un autovalore $λ_1!=0$ di $f$, si allora che $f(v/λ_1)=v$ da cui $vinImf$ e quindi per ipotesi ...
Siano $A, B ∈ M_n(RR)$ matrici simmetriche semidefinite positive. Dimostrare che la matrice $AB + λI$ è invertibile $AAλ>0$. Non sono ancora riuscito a risolvere questo esercizio però ho fatto delle osservazioni: intanto se $A$ è semidefinita positiva allora $det(A+λI)>=λ$ $AAλ>0$. Allora ho provato a sviluppare il prodotto $(A+sqrt(λ)I)(B+sqrt(λ)I)=AB+λI+sqrt(λ)A+sqrt(λ)B$ da cui $det(AB+λI+sqrt(λ)A+sqrt(λ)B)>=λ$ ma poi da qui non so ancora come andare avanti (non so neanche se sia la strada ...
Sia $AinM_n(RR)$. Dedurre che $A$ e $A^TA$ hanno lo stesso nucleo.
Io ho pensato di fare cosi:
Prendo $vinKerA$, si ha quindi che $Av=0$ ma allora $A^TAv=0$ da cui $vinKerA^TA$ e quindi $kerAsubeKerA^TA$. Definisco $<,>$ il prodotto scalare standard di $RR^n$ e prendo $vinKerA^TA$. Abbiamo che $<Av,Av> =v^tA^TAv=0$, poiché il prodotto scalare standard è definito positivo allora necessariamente ...
Ritorno all'attacco con un esercizio su parte interna e chiusura che non riesco a formalizzare (in gran parte perché non ho con me i miei appunti dell'epoca di cui studiai topologia, dunque non ricordo le cose alla perfezione)
Consideriamo i seguenti spazi topologici:
1) $X=RR$ con la topologia euclidea;
2) $ Y=RR$ con la topologia i cui aperti non banali sono le semirette destre aperte, ovvero $(a,+\infty)$ al variare di $a\in RR$.
3) ...
Sia $V$ spazio vettoriale su $CC$ e $finEnd(V)$ nilpotente. Dimostrare che $AAa,binV$ $EEx,yinV$ tali che $f(x)+x+y=a$ e $f(y)+y-x=b$
Io ho fatto in questo modo ma non sono sicuro sia giusto al 100%:
Sicuramente abbiamo che $f+I$ è invertibile poichè $f$ nilpotente quindi $f^n=0$ da cui $f^n+I=I$ e infine $(f+I)(f^(n-1)-...-I)=I$. Quindi sfruttando la definizione di invertibilità ...
Sia $AinM_n(CC)$ tale che $A^T=A^2-I$, determinare l’insieme dei possibili autovalori di $A$.
Io ho preso $v$ autovettore di $A$ rispetto all'autovalore $λ$ e ho dedotto che $A^Tv=A^2v-Iv=λ^2v-v=(λ^2-1)v$ per cui $λ^2-1$ è autovalore di $A^T$ ma poiché $A$ e $A^T$ sono simili allora $λ^2-1$ è autovalore di $A$. Ma allora rieseguendo il ragionamento di prima ...
Un endomorfismo è triangolabile se e solo se ogni sottospazio invariante non nullo contiene almeno un autovettore.
Io ho pensato cosi:
Se $finEnd(V)$ triangolabile abbiamo che il polinomio caratteristico di $f$ (chiamiamolo $p_f$) ha tutte le radici nel campo. Prendiamo $U$ sottospazio $f-$invariante non nullo, abbiamo che $p_f=p_(f|_U)*q$, da cui $p_(f|_U)$ ha tutte le radici nel campo e quindi ha almeno un autovalore da cui ...
Sia \( S \) un insieme e sia \( \mathscr S \) un atlante massimale. Facciamo che un sottoinsieme \( A\subset S \) è aperto se per ogni \( a\in A \) esiste una carta ammissibile (=una carta di \( S \)) \( (U,\phi) \) tale che \( a\in U\subset A \). Volevo provare che l'insieme degli aperti su \( S \) è una topologia, ma mi sono bloccato.
Dimostrazione. L'insieme \( S \) e l'insieme vuoto sono banalmente aperti. Sia \( {(A_i)}_{i\in I} \) una famiglia di aperti di \( S \). Sia \( a\in ...
Siano $g!=g'$ due forme bilineari simmetriche definite positive su $RR^n$. Mostrare che esiste una base ortogonale per entrambe, ma non esiste una base ortonormale per entrambe.
Allora io ho proceduto così:
Per induzione su $dimV$, se $dimV=1$ allora niente da dire. Procediamo con $dimV>1$:
Siccome sono entrambe definite positive prendo un vettore $v_1!=0inRR^n$, si ha che $g(v_1,v_1)!=0$ e $g'(v_1,v_1)!=0$.
Siccome definite positive (e ...
Ciao a tutti avrei bisogno di una mano con questo esercizio:
(i) Sia \(\displaystyle A \in \mathbb{R}^{n,n} \) una matrice tale che \(\displaystyle A^m = 0 \). Possiamo trovare gli autovalori di \(\displaystyle A \)? \(\displaystyle A \) è diagonalizzabile? E' possibile determinare univocamente \(\displaystyle A \)?
(ii) Ripetere l'esercizio precendente con \(\displaystyle A^m=I \). (Ricordare che \(\displaystyle \mathbb{R} \) e \(\displaystyle \mathbb{C} \) non sono uguali!)
Allora, per ...
Ciao a tutti avrei bisogno di una mano con questo esercizio:
Sia \(\displaystyle P \in \mathbb{R}^{n,n} \) una matrice ortogonale. E' vero che, per \(\displaystyle n=2 \) e \(\displaystyle n=3 \) la matrice \(\displaystyle P \) è diagonalizzabile su \(\displaystyle \mathbb{R} \)? Cosa accade su \(\displaystyle \mathbb{C} \)?
Ciò che so è che una matrice si dice ortogonale quando le sue righe (o le sue colonne) sono una base ortonormale, in questo caso di \(\displaystyle \mathbb{R^n} \); ...
Ciao a tutti, potreste darmi una mano con questo esercizio?
Trovare una base ortonormale per \(\displaystyle \mathrm{Row}\ I_n \) e \(\displaystyle \mathrm{Col}\ I_n \); ripetere per ogni matrice invertibile.
Per la matrice identica è davvero banale l'esercizio, i vettori della base canonica avente dimensione \(\displaystyle n \) formano già una base ortonormale no?
Per il resto ciò che so è che ogni matrice invertibile ha necessariamente righe e colonne tutte linearmente indipendenti, ...