Geometria e Algebra Lineare
Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia
Domande e risposte
Ordina per
In evidenza

Volevo chiedere una mano su un esercizio che ho impostato sfruttanod la definizione di matrice ortogonale ma mi vengono sistemi di secondo grado.
Io avrei da trovare una matrice ortogonale con la dispensa che la prima riga sia $(0,sqrt2/2,-sqrt2/2)$. Mi chiedo come possa fare senza andare a tentativi (cioè un metodo valido in generale perhcé oltre la definizione non ho molte idee )
Si costruisca un esempio della seguente situazione: $X$ è uno spazio topologico, $AsubeX$ è un sottospazio, l’inclusione $i:A->X$ è un’equivalenza omotopica, $A$ non è un retratto per deformazione di $X$.
Poniamo $X=RR^3$ e $A=S^2$. Consideriamo la funzione continua $r:RR^3->S^2$ definita come $r(x)=x/||x||$, si ha che $r\circi = id_S^2$ e $i\circr~Id_{RR^3}$ (quest'ultima vale poichè $RR^3$ è ...

Devo dimostare la seguente proposizione.
Data $S inMat_(m,n) (K)$ matrice a scala per righe.
Se $S^1,...,S^r$ sono le righe non nulle di S $=> f_S: Ker(L_S) ---> K^(n-r)$ ,che associa ad $x=(x_1.....x_n) in Ker(L_S)$ il vettore riga $x$ tolte le sue componenti con indice uguale all'indice colonna dei pivot di S, è un isomorfismo.
Sia $j_1,...,j_r$ rispettivamente l'indice colonna dei pivot della riga $S^1,...,S^r$.
Procediamo per induzione su r.
Per $r=0$ è banale.
Sia ...

Ciao a tutti , sto studiando il parallelismo retta-piano , e mi viene detto che una retta sarà parallela al piano se e solo se la loro intersezione mi dà il vettore nullo(ovvero non ha punti in comune) o una retta. Mi viene detto poi che questo succede solo nel caso in cui il sistema non è di Cramer , ovvero devo avere determinante uguale a 0. Vorrei sapere: qual' è il collegamento tra il determinante(che sia di Cramer o non ) e il parallelismo , o magari l'incidenza , ovvero , cosa mi ...
Dire se $sin:(RR, \tau_{RR,Zar})->(RR, \tau_{RR,Zar})$ è continua.
La topologia $\tau_{RR,Zar}$ coincide con la topologia cofinita su $RR$. Per cui preso ${0}$, che è un chiuso della topologia cofinita su $RR$ si ha che $sin^-1({0})=uu_{kinZZ}{kpi}$ che non è un chiuso della topologia cofinita su $RR$ per cui $sin:(RR, \tau_{RR,Zar})->(RR, \tau_{RR,Zar})$ non è continua.

Ciao ragazzi , sto studiando i vantaggi delle coordinate omogenee, e uno di questi è la complanarità di 4 punti , ovvero che :4 punti sono complanari se tutti appartengono allo stesso piano . Nello specifico , nella spiegazione , mi viene detto che : se il \( det\neq 0 \) , il sistema è di Cramer , quindi : \( \exists ! \) soluzione che è il vettore nullo, che geometricamente non ha significato in coordinate omogenee, e di conseguenza il determinante deve essere uguale a 0 per avere almeno un ...
[pgn][/pgn]Buongiorno,
la mia matrice è R = $[[1,1],[1,1]]$, con rango = 1.
Come faccio da qui a dedurre che un autovalore sarà nullo senza calcolarlo? Che tipo di relazione intercorre tra autovalori e rango?
Grazie in anticipo

Salve,
C'è un esercizio su cui ho un dubbio, in particolare si hanno due insiemi F e G in somma per cui ho trovato dimensioni e basi:
Fatto questo mi chiede data la matrice $C=((0,3),(0,2))$ di scriverla come due matrici C1 e C2 che appartengono a F e G rispettivamente.
La mia idea è stata quindi impostare:
$((0,3),(0,2))=alpha_1((12,-9),(4,0))+alpha_2((1,0),(0,1))+alpha_3((-2,3),(0,0))$
cioè scrivere C come combinazione lineare dei vettori dello spazio somma
E trovo $alpha_1=2$, $alpha_3=1$, tuttavia l'eserciziario dà ...
Si considerino i seguenti sottoinsiemi di $RR^3$: $X = S^1 xx RR = {(x, y, z)inRR^3| x^2 + y^2 = 1}$, $Z_+ = S^1 xx [1, +infty)$, $Z_−= S^1 xx (−infty, −1]$. Si consideri la relazione di equivalenza $~$ su $X$ definita da: $p~q$ se e solo se ($p = q$) o ($p, qinZ_+$) o ($p, qinZ_−$). Si provi che lo spazio topologico quoziente $X//~$ è omeomorfo a $S^2$.
Ho definito la funzione $f:X//~->S^2$ come
$f($ ...

Ciao ragazzi , potreste spiegarmi la differenza , anche con degli esempi , di punti singolari semplici e punti singolari doppi ? Stessa cosa per quanto riguarda la differenza tra coniche degeneri e non degeneri(anche perchè credo serva sapere prima le definizioni che ho richiesto all'inizio),grazie!
Si consideri il quadrato chiuso $X = [0, 1]xx[0, 1]subRR^2$ con la relazione di equivalenza $~$ definita come: $(x_1, y_1)~(x_2, y_2)$ se e solo se $(x_1, y_1) = (x_2, y_2)$ o (${x_1, x_2} = {0, 1}$ e $y_1 + y_2 = 1$). Provare che $X//~$ è T2.
Siccome $X$ è compatto e T2 ci basta mostrare che la proiezione $pi:X->X//~$ è chiusa, ovvero che la saturazione di ogni chiuso di $X$ è chiusa.
Preso $C$ un chiuso di $X$ allora la sua ...
Sia $\mathbb{K}$ un campo finito con $q$ elementi. Dire qual'è la cardinalità di $\mathbb{P}^n(\mathbb{K})$
Abbiamo che $\mathbb{K}^(n+1)\\{0}$ ha $q^(n+1)-1$ elementi. Inoltre ogni classe di equivalenza di $\mathbb{P}^n(\mathbb{K})$ contiene $q-1$ punti (poichè preso un punto in $\mathbb{K}^(n+1)\\{0}$ gli altri punti a esso equivalenti si ottengono moltiplicando il punto per tutti gli elementi di $\mathbb{K}$ escluso lo $0$) per cui la cardinalità di ...
(1) Si fissi un numero reale $a > 0$. Sia $GsubeOmeo(RR)$ il sottogruppo generato dall’omeomorfismo di $RR$ in sé definito da $x->x+a$ per ogni $x inRR$. Si provi che lo spazio topologico quoziente $RR//G$ rispetto a quest’azione è omeomorfo a $S^1$.
(2) Si fissi un numero reale $a > 1$. Si consideri l’azione del gruppo $ZZ$ su $(0, +infty)$ data da $(n,y)->a^ny$ per ogni $ninZZ$, ...
${0, 1}$ è aperto in $QQ$?
No, supponiamo per assurdo che ${0,1}$ sia aperto in $QQ$ ma allora $EEA$ aperto di $RR$ tale che ${0,1}=AnnQQ$. In particolare $EEa,b,c,dinRR$ tale che $0in(a,b)subeA$ e $1in(c,d)subeA$, per cui $(0,b)subeA$, $(c,1)subeA$. Se $(0,b)nn(c,1)=∅$ allora $1notin(0,b)$. Per densità di $QQ$ $EEqinQQ$ tale che $qin(0,b)$, per cui ...
Sia $f : X ->Y$ un’identificazione tale che la fibra di ogni punto di $Y$ ha cardinalità finita. Si provi che se $X$ è T1 allora anche $Y$ è T1.
Abbiamo che siccome $X$ è T1 allora ${x}$ è chiuso $AAx inX$. Per cui sia $yinY$ si ha che $f^(-1)(y)=uu_{x inf^(-1)(y)}{x}$ siccome è un unione finita (dato che $f^(-1)(y)$ è finito $AAyinY$) di chiusi allora $f^(-1)(y)$ è chiuso, ma allora usando che ...
Si consideri il seguente sottoinsieme di $RR^2$:
$X={(x,sin(1/x)}inRR^2|x in(0,+infty)}uu{0}xx[-1,1]$
Sia $alpha: [0, 1]->X$ una funzione continua tale che $alpha(0)=(0, 0)$. Si considerino le due proiezioni $pr_1:RR^2->RR$ e $pr_2:RR^2->RR$ e si ponga $alpha_i= pr_i\circalpha: [0, 1]->RR$ per $i = 1,2$. Si ponga $E = alpha_1^-1(0)$. Si ha che $E$ è non vuoto ed è chiuso in $[0,1]$. Si dimostri che per ogni $t_0inE$, esiste $epsilon>0$ tale che $(t_0 − epsilon, t_0 + epsilon)nn[0, 1]subeE$.
Allora la ...
Sia $WsubeRR^n$ un sottospazio affine di dimensione $k$. Si dimostri che $W$ è omeomorfo a $RR^k$. Si dimostri che $RR^n\\W$ è omeomorfo a $S^(n−1−k)xxRR^(k+1)$.
Con una traslazione (che è un omeomorfismo), possiamo supporre che $W$ passi per l’origine e con un automorfismo lineare (ancora un omeomorfismo) possiamo supporre che le $k$ coordinate di $W$ siano le ultime $k$ in ...
Sia $X$ uno spazio topologico T2 e sia ${A_i}_{iinNN}$ una famiglia numerabile di sottoinsiemi di
$X$, non vuoti, muniti della topologia di sottospazio e tali che $A_isupeA_{i+1}$ per ogni $iinNN$. Si ponga $A_{infty}=nn_{iinNN}A_i$.
(1) Se per ogni $iinNN$ $A_i$ è compatto e connesso, allora si provi che $A_{infty}$ è non vuoto, compatto e connesso.
(2) Se per ogni $iinNN$ $A_i$ è compatto e connesso per archi, ...
Sia $X$ un aperto di $RR^n$. Si provi che se $X$ è connesso allora $X$ è connesso per archi.
Siccome $X$ è aperto, preso $x inX$ $EEepsilon>0$ tale che $B_epsilon(x)subeX$ per cui $B_epsilon(x)$ è un intorno (aperto) connesso per archi di $x$ in $X$, quindi $X$ è localmente connesso per archi per cui le componenti connesse per archi di $X$ coincidono con ...
Consideriamo due elementi distinti $+infty$ e $−infty$ che non sono numeri reali. Si consideri l’insieme $\bar RR=RRuu{−infty, +infty}$. Sia $\tau$ la topologia euclidea di $RR$. Si considerino i seguenti insiemi:
$A_{+infty}={Asube\barRR|+inftyinA, −inftynotinA, AnnRRin\tau , EEainRR : AnnRRsupe(a, +infty)}$
$A_{-infty}={Asube\barRR|+inftynotinA, −inftyinA, AnnRRin\tau , EEainRR : AnnRRsupe(-infty,a)}$
$A_{+-infty}={Asube\barRR|+inftyinA, −inftyinA, AnnRRin\tau , EEainRR^+ : AnnRRsupe(-infty,-a)uu(a, +infty)}$
Si ponga $\bar \tau= \tau uuA_{+infty}uuA_{-infty}uuA_{+-infty}$.
Si ha che $\bar \tau$ è una topologia su $\bar RR$ e $A_{+infty}uuA_{+-infty}$ è l’insieme degli intorni aperti di $+infty$ in $(\bar RR,\bar \tau)$. Si provi ...