Geometria e Algebra Lineare

Discussioni su problemi, esercizi e teoremi che riguardano la geometria, l'algebra lineare e la topologia

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
periodo_vettoriano
Volevo chiedere una mano su un esercizio che ho impostato sfruttanod la definizione di matrice ortogonale ma mi vengono sistemi di secondo grado. Io avrei da trovare una matrice ortogonale con la dispensa che la prima riga sia $(0,sqrt2/2,-sqrt2/2)$. Mi chiedo come possa fare senza andare a tentativi (cioè un metodo valido in generale perhcé oltre la definizione non ho molte idee )
2
24 ago 2023, 21:57

Angus1956
Si costruisca un esempio della seguente situazione: $X$ è uno spazio topologico, $AsubeX$ è un sottospazio, l’inclusione $i:A->X$ è un’equivalenza omotopica, $A$ non è un retratto per deformazione di $X$. Poniamo $X=RR^3$ e $A=S^2$. Consideriamo la funzione continua $r:RR^3->S^2$ definita come $r(x)=x/||x||$, si ha che $r\circi = id_S^2$ e $i\circr~Id_{RR^3}$ (quest'ultima vale poichè $RR^3$ è ...
2
24 ago 2023, 17:09

Daniele_981
Devo dimostare la seguente proposizione. Data $S inMat_(m,n) (K)$ matrice a scala per righe. Se $S^1,...,S^r$ sono le righe non nulle di S $=> f_S: Ker(L_S) ---> K^(n-r)$ ,che associa ad $x=(x_1.....x_n) in Ker(L_S)$ il vettore riga $x$ tolte le sue componenti con indice uguale all'indice colonna dei pivot di S, è un isomorfismo. Sia $j_1,...,j_r$ rispettivamente l'indice colonna dei pivot della riga $S^1,...,S^r$. Procediamo per induzione su r. Per $r=0$ è banale. Sia ...
0
24 ago 2023, 17:22

Biagio2580
Ciao a tutti , sto studiando il parallelismo retta-piano , e mi viene detto che una retta sarà parallela al piano se e solo se la loro intersezione mi dà il vettore nullo(ovvero non ha punti in comune) o una retta. Mi viene detto poi che questo succede solo nel caso in cui il sistema non è di Cramer , ovvero devo avere determinante uguale a 0. Vorrei sapere: qual' è il collegamento tra il determinante(che sia di Cramer o non ) e il parallelismo , o magari l'incidenza , ovvero , cosa mi ...
1
24 ago 2023, 11:55

Angus1956
Dire se $sin:(RR, \tau_{RR,Zar})->(RR, \tau_{RR,Zar})$ è continua. La topologia $\tau_{RR,Zar}$ coincide con la topologia cofinita su $RR$. Per cui preso ${0}$, che è un chiuso della topologia cofinita su $RR$ si ha che $sin^-1({0})=uu_{kinZZ}{kpi}$ che non è un chiuso della topologia cofinita su $RR$ per cui $sin:(RR, \tau_{RR,Zar})->(RR, \tau_{RR,Zar})$ non è continua.
2
23 ago 2023, 00:07

Biagio2580
Ciao ragazzi , sto studiando i vantaggi delle coordinate omogenee, e uno di questi è la complanarità di 4 punti , ovvero che :4 punti sono complanari se tutti appartengono allo stesso piano . Nello specifico , nella spiegazione , mi viene detto che : se il \( det\neq 0 \) , il sistema è di Cramer , quindi : \( \exists ! \) soluzione che è il vettore nullo, che geometricamente non ha significato in coordinate omogenee, e di conseguenza il determinante deve essere uguale a 0 per avere almeno un ...
4
17 ago 2023, 16:10

IreneLoGiudice
[pgn][/pgn]Buongiorno, la mia matrice è R = $[[1,1],[1,1]]$, con rango = 1. Come faccio da qui a dedurre che un autovalore sarà nullo senza calcolarlo? Che tipo di relazione intercorre tra autovalori e rango? Grazie in anticipo
4
22 ago 2023, 13:01

pistacios
Salve, C'è un esercizio su cui ho un dubbio, in particolare si hanno due insiemi F e G in somma per cui ho trovato dimensioni e basi: Fatto questo mi chiede data la matrice $C=((0,3),(0,2))$ di scriverla come due matrici C1 e C2 che appartengono a F e G rispettivamente. La mia idea è stata quindi impostare: $((0,3),(0,2))=alpha_1((12,-9),(4,0))+alpha_2((1,0),(0,1))+alpha_3((-2,3),(0,0))$ cioè scrivere C come combinazione lineare dei vettori dello spazio somma E trovo $alpha_1=2$, $alpha_3=1$, tuttavia l'eserciziario dà ...
6
17 ago 2023, 10:39

Angus1956
Si considerino i seguenti sottoinsiemi di $RR^3$: $X = S^1 xx RR = {(x, y, z)inRR^3| x^2 + y^2 = 1}$, $Z_+ = S^1 xx [1, +infty)$, $Z_−= S^1 xx (−infty, −1]$. Si consideri la relazione di equivalenza $~$ su $X$ definita da: $p~q$ se e solo se ($p = q$) o ($p, qinZ_+$) o ($p, qinZ_−$). Si provi che lo spazio topologico quoziente $X//~$ è omeomorfo a $S^2$. Ho definito la funzione $f:X//~->S^2$ come $f($ ...
4
20 ago 2023, 23:03

Biagio2580
Ciao ragazzi , potreste spiegarmi la differenza , anche con degli esempi , di punti singolari semplici e punti singolari doppi ? Stessa cosa per quanto riguarda la differenza tra coniche degeneri e non degeneri(anche perchè credo serva sapere prima le definizioni che ho richiesto all'inizio),grazie!
3
20 ago 2023, 16:28

Angus1956
Si consideri il quadrato chiuso $X = [0, 1]xx[0, 1]subRR^2$ con la relazione di equivalenza $~$ definita come: $(x_1, y_1)~(x_2, y_2)$ se e solo se $(x_1, y_1) = (x_2, y_2)$ o (${x_1, x_2} = {0, 1}$ e $y_1 + y_2 = 1$). Provare che $X//~$ è T2. Siccome $X$ è compatto e T2 ci basta mostrare che la proiezione $pi:X->X//~$ è chiusa, ovvero che la saturazione di ogni chiuso di $X$ è chiusa. Preso $C$ un chiuso di $X$ allora la sua ...
0
20 ago 2023, 00:45

Angus1956
Sia $\mathbb{K}$ un campo finito con $q$ elementi. Dire qual'è la cardinalità di $\mathbb{P}^n(\mathbb{K})$ Abbiamo che $\mathbb{K}^(n+1)\\{0}$ ha $q^(n+1)-1$ elementi. Inoltre ogni classe di equivalenza di $\mathbb{P}^n(\mathbb{K})$ contiene $q-1$ punti (poichè preso un punto in $\mathbb{K}^(n+1)\\{0}$ gli altri punti a esso equivalenti si ottengono moltiplicando il punto per tutti gli elementi di $\mathbb{K}$ escluso lo $0$) per cui la cardinalità di ...
2
21 ago 2023, 22:45

Angus1956
(1) Si fissi un numero reale $a > 0$. Sia $GsubeOmeo(RR)$ il sottogruppo generato dall’omeomorfismo di $RR$ in sé definito da $x->x+a$ per ogni $x inRR$. Si provi che lo spazio topologico quoziente $RR//G$ rispetto a quest’azione è omeomorfo a $S^1$. (2) Si fissi un numero reale $a > 1$. Si consideri l’azione del gruppo $ZZ$ su $(0, +infty)$ data da $(n,y)->a^ny$ per ogni $ninZZ$, ...
3
20 ago 2023, 01:08

Angus1956
${0, 1}$ è aperto in $QQ$? No, supponiamo per assurdo che ${0,1}$ sia aperto in $QQ$ ma allora $EEA$ aperto di $RR$ tale che ${0,1}=AnnQQ$. In particolare $EEa,b,c,dinRR$ tale che $0in(a,b)subeA$ e $1in(c,d)subeA$, per cui $(0,b)subeA$, $(c,1)subeA$. Se $(0,b)nn(c,1)=∅$ allora $1notin(0,b)$. Per densità di $QQ$ $EEqinQQ$ tale che $qin(0,b)$, per cui ...
10
7 ago 2023, 18:30

Angus1956
Sia $f : X ->Y$ un’identificazione tale che la fibra di ogni punto di $Y$ ha cardinalità finita. Si provi che se $X$ è T1 allora anche $Y$ è T1. Abbiamo che siccome $X$ è T1 allora ${x}$ è chiuso $AAx inX$. Per cui sia $yinY$ si ha che $f^(-1)(y)=uu_{x inf^(-1)(y)}{x}$ siccome è un unione finita (dato che $f^(-1)(y)$ è finito $AAyinY$) di chiusi allora $f^(-1)(y)$ è chiuso, ma allora usando che ...
0
18 ago 2023, 18:08

Angus1956
Si consideri il seguente sottoinsieme di $RR^2$: $X={(x,sin(1/x)}inRR^2|x in(0,+infty)}uu{0}xx[-1,1]$ Sia $alpha: [0, 1]->X$ una funzione continua tale che $alpha(0)=(0, 0)$. Si considerino le due proiezioni $pr_1:RR^2->RR$ e $pr_2:RR^2->RR$ e si ponga $alpha_i= pr_i\circalpha: [0, 1]->RR$ per $i = 1,2$. Si ponga $E = alpha_1^-1(0)$. Si ha che $E$ è non vuoto ed è chiuso in $[0,1]$. Si dimostri che per ogni $t_0inE$, esiste $epsilon>0$ tale che $(t_0 − epsilon, t_0 + epsilon)nn[0, 1]subeE$. Allora la ...
4
18 ago 2023, 13:19

Angus1956
Sia $WsubeRR^n$ un sottospazio affine di dimensione $k$. Si dimostri che $W$ è omeomorfo a $RR^k$. Si dimostri che $RR^n\\W$ è omeomorfo a $S^(n−1−k)xxRR^(k+1)$. Con una traslazione (che è un omeomorfismo), possiamo supporre che $W$ passi per l’origine e con un automorfismo lineare (ancora un omeomorfismo) possiamo supporre che le $k$ coordinate di $W$ siano le ultime $k$ in ...
5
11 ago 2023, 15:20

Angus1956
Sia $X$ uno spazio topologico T2 e sia ${A_i}_{iinNN}$ una famiglia numerabile di sottoinsiemi di $X$, non vuoti, muniti della topologia di sottospazio e tali che $A_isupeA_{i+1}$ per ogni $iinNN$. Si ponga $A_{infty}=nn_{iinNN}A_i$. (1) Se per ogni $iinNN$ $A_i$ è compatto e connesso, allora si provi che $A_{infty}$ è non vuoto, compatto e connesso. (2) Se per ogni $iinNN$ $A_i$ è compatto e connesso per archi, ...
8
18 ago 2023, 21:30

Angus1956
Sia $X$ un aperto di $RR^n$. Si provi che se $X$ è connesso allora $X$ è connesso per archi. Siccome $X$ è aperto, preso $x inX$ $EEepsilon>0$ tale che $B_epsilon(x)subeX$ per cui $B_epsilon(x)$ è un intorno (aperto) connesso per archi di $x$ in $X$, quindi $X$ è localmente connesso per archi per cui le componenti connesse per archi di $X$ coincidono con ...
0
17 ago 2023, 12:49

Angus1956
Consideriamo due elementi distinti $+infty$ e $−infty$ che non sono numeri reali. Si consideri l’insieme $\bar RR=RRuu{−infty, +infty}$. Sia $\tau$ la topologia euclidea di $RR$. Si considerino i seguenti insiemi: $A_{+infty}={Asube\barRR|+inftyinA, −inftynotinA, AnnRRin\tau , EEainRR : AnnRRsupe(a, +infty)}$ $A_{-infty}={Asube\barRR|+inftynotinA, −inftyinA, AnnRRin\tau , EEainRR : AnnRRsupe(-infty,a)}$ $A_{+-infty}={Asube\barRR|+inftyinA, −inftyinA, AnnRRin\tau , EEainRR^+ : AnnRRsupe(-infty,-a)uu(a, +infty)}$ Si ponga $\bar \tau= \tau uuA_{+infty}uuA_{-infty}uuA_{+-infty}$. Si ha che $\bar \tau$ è una topologia su $\bar RR$ e $A_{+infty}uuA_{+-infty}$ è l’insieme degli intorni aperti di $+infty$ in $(\bar RR,\bar \tau)$. Si provi ...
0
16 ago 2023, 13:50