Analisi matematica di base

Quando all'Università i problemi con la matematica tolgono il sonno, cerca aiuto qui

Domande e risposte

Ordina per

In evidenza
In evidenza
Più recenti
Più popolari
Con risposta
Con miglior risposta
Senza risposta
digirolamodaniele2004
Salve, stavo provando a risolvere il seguente esercizio: $F(x)=$ $ \int_{0}^{x} \text{ sin(t^2)} \text{d}t $ a) Determinare l' ordine di infinitesimo di $F$ in $x=0$ Per risolvere ho provato ad utilizzare lo sviluppo di Taylor Mc Laurin in x=0, ottendo: $sin(x^2) = x^2 + o(x^2) $ Tuttavia, il risultato riportato dal libro dice che l' ordine di infinitesimo è 3. Dove sbaglio?
2
25 apr 2024, 20:37

DR1
$((n),(k)) = (n!)/(k!(n-k)!)$ come si arriva da $(n!)/(k!(n-k)!)$ a $(n!)/(k!(n-k)!) = (n(n-1)...(n-k+1))/(k!)$ ?
13
DR1
8 apr 2024, 14:32

abvefgrhtjykuliukjth
Ciao, ho un dubbio su un esercizio in cui vi è un passaggio nella soluzione che proprio non capisco. $d/(dt)((fg)∘alpha(t))=d/(dt)(fg(alpha(t))$ dove ho moltiplicazione di f e g e composizione con alpha funzioni la soluzione riportata è: $d/(dt)(f∘alpha)*g+fd/(dt)(g∘alpha)$ ma a me sembra che dovrei avere (sfruttando la derivazione composta: $(d(g(f(x))))/(dx)=(dg(f))/(df)*(df(x))/(dx)$) -sbaglio la formula? non mi pare, correggetemi nel caso - Quindi: $d/(dalpha)(fg)(alpha)*(dalpha)/(dt)=((df)/(dalpha)*g+f*(dg)/(dalpha))(dalpha)/(dt)$
6
21 apr 2024, 16:02

Angus1956
Mostrare che $f(z)=1/z$ in $CC$ manda il cerchio di centro $z_0$ e raggio $R$ nel cerchio di centro $\bar z_0/(abs(z_0)^2-R^2)$ e raggio $R/(abs(abs(z_0)^2-R^2))$. Preso $z$ nel cerchio di centro $z_0$ e raggio $R$ si ha che $abs(z-z_0)=R$, noi vogliamo mostrare che $abs(f(z)-z_0/(abs(z_0)^2-R^2))=R/(abs(abs(z_0)^2-R^2))$ Svillupando il primo membro si ha $abs(1/z-z_0/(abs(z_0)^2-R^2))=1/(abs(abs(z_0)^2-R^2))abs((abs(z_0)^2-R^2-\bar z_0z)/z)$, ora se riuscissi a mostrare che $(abs(z_0)^2-R^2-\bar z_0z)/z=z-z_0$ ho finito, ma non so come ...
4
20 apr 2024, 11:25

SwitchArio
Buongiorno, sono bloccato e ho dei dubbi sullo svolgimento di un esercizio che mi chiede di stabilire se il seguente integrale converge o diverge al variare di \(\displaystyle \alpha \). \(\displaystyle \int_1^{+\infty}\frac{\ln(1+\frac{1}{x^\alpha})}{|x-2|^{\alpha+1/3}} \) Studiando \(\displaystyle \alpha >0\) ho considerato \(A = \displaystyle \int_2^{+\infty}\frac{\ln(1+\frac{1}{x^\alpha})}{(x-2)^{\alpha+1/3}} dx\) e ho ragionato così per \(\displaystyle x\to+\infty \) si ha ...
2
21 apr 2024, 11:51

Quasar3.14
Ciao a tutti, mi sono imbattuto in questo esercizio su degli appunti e vorrei sapere che tipo di semplificazione è stata effettuata(e se è stata eseguita correttamente). L'esercizio è il seguente $\lim_{n \to \+infty} n^2(root(3)(n^3+8)-n) $ I primi passaggi sono chiari, simili ad altri passaggi che mi avete insegnato in altri topic. Viene applicata la razionalizzazione inversa sfruttando il prodotto notevole della differenza tra cubi, con $a=root(3)(n^3+8)$ e $ b=n$ Si ottieni quindi $\lim_{n \to \+infty} (8n^2)/(root(3)((n^3+8)^2 +nroot(3)(n^3+8) + n^2)$ Ora ...
2
20 apr 2024, 12:38

Quasar3.14
Ciao a tutti, mi potreste aiutare, per favore, con lo svolgimento di questo esercizio? Calcolo del dominio della seguente funzione $f(x) = ln(3-x)/(xlnx)$ e la verifica se sia iniettiva e/o suriettiva nei seguenti insiemi di definizione: $[0,1], (1,2), (0,1)$ Impongo le condizioni di esistenza ed ottengo il dominio ${x in RR: 0<x<1 vv 1<x<3}$ Come faccio a controllare l'iniettività e la suriettivita, analiticamente, negli insiemi dati? Per controllare se una funzione è iniettiva, in assenza del grafico, ...
7
19 apr 2024, 10:25

jontao
Qualcuno può spiegarmi perche: $\sum_{k,l=1}^{\infty}\frac{p^2}{k+l-1}(1-p)^{k+l-2} = \sum_{j=2}^{\infty}\sum_{l=1}^{j-1}\frac{1}{j-1}{p^2(1-p)^{j-2}}$ E $\sum_{k,l=1}^{\infty} kl = \sum_{k=1}^{\infty}\sum_{l=1}^{k}kl=\sum_{k=1}^{\infty}k^2+\sum_{k=1}^{\infty}k\sum_{l=1}^{k-1}l$
3
18 apr 2024, 20:51

limitato
Ciao, avrei una domanda e non so darmi risposta e quindi provo qui con voi esperti di matematica. Mi chiedevo cosa succederebbe se nella definizione di limite scrivessi $|f(x)-c|<=epsilon$ anziché il minore stretto. Inoltre nel caso della definizione di continuità nel punto x0, anche qui c'è minore stretto, e perché non $|f(x)-f(x_0)|<=epsilon$ Mi sapreste aiutare su questi due punti?
19
1 apr 2024, 19:33

otta96
Negli ultimi giorni stavo pensando a una cosa, se io ho una funzione $f:[a,b]->RR|f(x)>0AAx\in[a,b]$, e so che questa funzione è limitata e (Riemann-)integrabile, posso dire che il suo integrale è positivo? Io direi assolutamente di si, ma non mi viene in mente come dimostrarlo, forse mi sto perdendo in un bicchier d'acqua, ma mi serve il vostro aiuto per uscirne.
14
9 set 2017, 00:48

Quasar3.14
Ciao a tutti, potreste darmi, per favore, un parere sui seguenti esercizi? $\lim_{n \to \+infty}(n+lnn^2-2^n)/((lnn)^3+n^2$ È il rapporto tra la somma di diversi infiniti, in questo caso posso prendere in considerazioni solo gli infiniti più grandi, o meglio quelli che tendono ad infinito più velocemente? In tal caso posso riscrivere $\lim_{n \to \+infty}(-2^n)/n^2$ Ho un esponenziale al numeratore ed una potenza al denominatore, quindi il limite è $-infty$, corretto? Il secondo esercizio è $\lim_{n \to \+infty}(n^2*3^n)/(pi^n)$ Per calcolare ...
9
13 apr 2024, 01:17

m.e._liberti
Salve. Devo determinare il sup di $f(x,y)=(sqrtx+sqrty)/(sqrt(x+y))$ per $x,y>0$. So che dovrebbe essere infinito, ma non riesco a farlo vedere praticamente. Calcolo $lim_((x,y)->\infty)f(x,y)$?
14
16 apr 2024, 10:16

Studente Anonimo
E' da un po' che non faccio analisi 2 veramente, e mi è sorto un dubbio sul teorema del differenziale totale (così credo si chiami in italiano), che dice quanto segue: Sia \(E \subseteq \mathbb{R}^n\), \( f: E \to \mathbb{R} \), e \( \mathbf{a} \in E \). Se esiste \( \delta > 0 \) tale che per ogni derivata parziale \( \frac{ \partial f}{\partial x_k} \) di \(f\) esiste in ogni punto della palla aperta \( B( \mathbf{a}, \delta) \) e \( \frac{ \partial f}{\partial x_k}(x_1,\ldots,x_k) \) è ...
7
Studente Anonimo
11 apr 2024, 23:17

climatizzato
Ciao, volevo chiedervi una mano su alcuni concetti che non mi sono chiarissimi, parto dalle definizioni: - punto di accumulazione: $forall x_0 in R$ è di accumulazione per $A$ sottoinsieme di $RR$ se $forall epsilon>0$ esiste $y in A$ con $y!=x_0$ t.c $y in B(x_0,epsilon)$ cioè volendo potrei riscriverla come: $forall x_0 in R$ è di accumulazione per $A$ sottoinsieme di $RR$ se $forall epsilon>0$ si ha che ...
4
11 apr 2024, 15:47

limitato
Mi è sorto un dubbione su questo tipo di equazioni differenziali. So che una tale equazione differenziale è del tipo: $y'(t)=a(t)⋅b(y(t)) $ Ho per esercizio la: $ y'(t)=Csin(t) $ e l ho risolta considerando:$ Csint=a(t) $ Il mio dubbio nasce da una considerazione, io potrei notare che $b(y(t))$ potrebbe essere la mia $sint$ infatti sicuramente esiste come funzione $y(t)=t$ quindi se b e sin ho: $b(y(t))=sin(y(t))=sin(t)$ A questo punto però potrei seprarare come segue: ...
14
11 apr 2024, 18:12

marthy_92
Ciao! Ho dei problemi a risolvere due sistemi di eq differenziali che coinvolgono $ t=t(x,u) $ e $v=v(x,u) $ in un cambio variabili invertibile $ { x^2 (\partialt)/(partialx) +xu(\partialt)/(partialu)=0, x^2 (\partialv)/(partialx )+xu(\partialv)/(partialu)=1:} $ $ { x (\partialt)/(partialx) +5/4 u(\partialt)/(partialu)=-t, x (\partialv)/(partialx )+5/4u(\partialv)/(partialu)=-v:} $ Ho cominciato dal primo sistema, con la prima equazione; integro le caratteristiche $ dx/x^2=(du)/(xu) rArr \omega_1=u/x $ Prendo la più semplice funzione di $ omega_1 $ cioè $ t=u/x $. Poichè la funzione $t$ dipende da entrambi gli argomenti, posso ipotizzare per avere ...
3
12 apr 2024, 17:19

tachiflupec
Ciao, ho un problema nel capire una notazione che usa il prof. Io ho studiato dal corso di analisi che la derivata direzionale è ad esempio per $f(x,y)$ lungo $vec v=(v_1,v_2)$ versore: $(partialf(x,y))/(partialvecv)=lim_(t->0) (f(x+tv_1,y+tv_2)-f(x,y))/t$ Bene, detto questo si nota dalla: $f(x_0+h,x_0+k)=f(x_0,y_0)+(partialf)/(partialx)h+(partialf)/(partialy)k+o(sqrt(h^2+k^2))$ che il differenziale altri non è se non $vecnablaf*(h,k)$. D'altra parte l'ultima considerazione è quella che in effetti si sfrutta quando si dimostra la formula del gradiente: $vec nabla f*vecv=(partialf(x,y))/(partialvecv)$ (avendo cura di riscrivere nella ...
11
2 apr 2024, 14:36

Quasar3.14
Ciao a tutti, continuo le mie esercitazioni con le serie. Potreste darmi un parere? $\sum_{n=2}^{+\infty} 3^n-((n-2)/n)^(n^2)$ La serie è a termini positivi. Utilizzo il criterio della radice. $\lim_{n \to \infty}root(n)(3^n-((n-2)/n)^(n^2))$ $\lim_{n \to \infty} 3-((n-2)/n)^n$ $\lim_{n \to \infty} 3-(1-2/n)^n = 3 - 1/e^2 > 1$ Se non ho commesso errori la serie diverge. Il dubbio principale è se ho semplificato bene con la radice l'esponente $n^2$ Seconda serie: $\sum_{n=1}^{+\infty} (5^n/(n^5*2^(2n)))$ Serie a termini positivi. La riscrivo in questo modo. $\sum_{n=1}^{+\infty} (5^n/(n^5*4^n)))$ Cerco di stabilirne ...
8
10 apr 2024, 23:12

Quasar3.14
Ciao a tutti, ho iniziato lo studio delle serie ma ho alcuni dubbi. Ho compreso che lo studio del carattere di una serie non si limita a svolgere il limite dello stesso. Nella pratica però non mi è chiaro questo come si traduce. Nel caso che si possa adottare il criterio della radice o del rapporto, ad esempio, in base al risultato ottenuto con il limite se $<$ o $>$ di $1$ possiamo affermare se diverge o converge, ma negli altri casi? Per esempio, ...
18
30 mar 2024, 12:36

hjkkk
Salve, affrontando le equazioni differenziali (nella fattispecie del primo ordine) mi sono imbattuto in questo teorema alquanto “astratto” del quale non riesco proprio a tirare fuori una qualche rappresentazione visiva. Mi spiego meglio: date una generica EDO del primo ordine in forma normale y’=F(x,y) e una condizione iniziale y0=(x0), che ruolo giocano la continuità di F in un intorno di (x0,y0) e la continuità della derivata parziale di F rispetto ad y sempre in suddetto intorno? In realtà ...
2
8 apr 2024, 22:28