Analisi superiore
Discussioni su calcolo di variabile complessa, distribuzioni, Trasformata di Fourier, Teoria della misura, Analisi funzionale, Equazioni alle derivate parziali, Calcolo delle Variazioni e oltre.
Domande e risposte
Ordina per
In evidenza

Buondì, ho qui un esercizio che mi sta creando qualche problema.
Siano $f, g, h$ funzioni definite su $[0,2pi]$le cui serie di Fourier sono date da:
$f(x): sum_(n=1)^(oo)1/sqrtnsin(nx) ;$
$ g(x): sum_(n=1)^(oo)1/(n^2+1)cos(nx)+1/n^4sin(nx) ;$
$ h(x): sum_(n=1)^(oo)1/2^n cos(nx)$
Mi viene chiesto di valutare con meno conti possibili l'appartenenza delle funzioni originali a $L^2, C^k$ e la loro convergenza uniforme a $f, g,h$. Non so bene "dove" cercare le risposte in una serie di Fourier.
Mi pare che la serie di Fourier di una ...

Buondì, la domanda è di carattere teorico, ma la presento tramite l'esercizio che me l'ha fatta sorgere.
Ho $u, u', u''$ e voglio verificare se $u in H^1(R), u' in H^1(R)$
Per farlo mi assicuro che le derivate di ordine $ <=1$ di $u,u'$ appartengano a $L^2(R)$.
La domanda sorge quando devo verificare l'appartenenza di $u'$:
- devo trattarla come derivata di $u$, e dunque verificare che essa stessa appartenga a $L^2(R)$ poiché sto ...

Ciao, vorrei chiedere una cosa che ho trovato studiando le distribuzioni
e non riesco a capire se sia vera o falsa.
Supponiamo che $f_{n}$ converga a f in $L_{loc}^1(\mathbb{R})$ (spazio delle funzioni localmente integrabili), nel senso che $f_{n}$ converge a f in $L^1([[a,b]])$ per ogni intervallo.
Vorrei capire il legame che c'è tra questa convergenza e quella q.o.
Non riesco a trovare nulla sul web, per questo spazio, ma solo su $L^1$ (e mi pare di aver letto ...

Buon pomeriggio
Devo sviluppare in serie di Laurent $f(x) =1/(z^2- 3z +2)$ in $abs(z-1)>1$
Ho scritto la funzione come $f(x) =-1/(z-1) + 1/(z-2)$ ed $1/(z-2) = sum_{n=0}^(+infty) (z-1)^(-n-1)$
Per cui $f(x) =-1/(z-1) +sum_{n=0}^(+infty) (z-1)^(-n-1)$
È giusto?
Grazie in anticipo

Salve a tutti,
Ho bisogno di aiuto con questo esercizio:
\(\displaystyle \gamma(t)=1+3e^{it}, t \in [0;2\pi) \) devo calcolare \(\displaystyle \int_{\gamma}ze^{-1/z}dz\)
La curva è percorsa una volta da 0 a 2pi, centrata in 1, perciò pensavo di usare il teorema di Cauchy per semplificarmi i calcoli, ma all'interno dell'integrale non mi ritrovo \(\displaystyle \frac{f(z)}{z-z_0} \), quindi devo per forza eseguire i calcoli per intero o c'è qualcosa che mi sfugge?
Chiedo scusa se è una ...
Mi stavo domandando quanto segue:
Una funzione armonica su \( \mathbb{R}^2 \) limitata è costante? Da questo si può dedurre che una qualunque funzione intera il cui codominio è \( U \subsetneq \mathbb{C} \) che è un semplicemente connesso è costante? Mentre possiamo sempre trovare una funzione olomorfa \( f: U \to \mathbb{C} \) limitata e non costante?
Provo a dare delle dimostrazioni delle mie supposizioni:
Sia \( u : \mathbb{R}^2 \to \mathbb{R} \) armonica, allora è la parte reale di una ...
\( \mathbb{C}^* \) è semplicemente connesso o no?
Io direi di no, siccome se \( f: U \to \mathbb{C} \) è una funzione olomorfa su un aperto semplicemente connesso, \(f \) ammette una primitiva.
Ma \( f(z) = \frac{1}{z} \) è olomorfa su \( \mathbb{C}^* \) ma se faccio \( \oint_{\mathbb{D}} \frac{1}{z} \) non ammette una primitiva infatti
\[ \oint_{\partial \mathbb{D}} \frac{1}{z} = \int_{0}^{2\pi} \frac{ie^{it}}{e^{it}}dt = 2\pi i \neq 0 \]
E per Morera dovremmo avere che siccome \( ...
È vero che se \( f: U \to \mathbb{C} \) è una funzione olomorfa non costante definita su un aperto connesso, allora la parte reale e immaginaria di \( f \) non possiede massimi ne minimi in \( U \).
Secondo me sì:
Abbiamo che \( e^{f(z)} \), è olomorfa su \( U \) inoltre \(\left| e^{f(z)} \right| = e^{\Re(f)} \) è una funzione reale definita su un aperto quindi siccome la funzione \( x \mapsto e^x \) è monotona crescente abbiamo che non possiede massimi sull'aperto. Per il minimo è sufficiente ...
Siano \( u,v : \mathbb{R}^2 \to \mathbb{R} \) funzioni \( C^1 \) e \( f(x+iy)=u(x,y)+iv(x,y) \) e sia \( \Omega \subset \mathbb{C} \) dimostra che
\[ \oint_{\partial \Omega} f(z) dz = 2i \int \int_{\Omega} \overline{\partial}f(x,y)dxdy \]
Dove \( \overline{\partial} f \) indica la derivata di Wirtinger
Mi chiedevo chiedevo se fosse leggittimo operare in questo modo:
Identifichiamo \( \Omega \) come sottinsieme di \( \mathbb{R}^2 \) e \( f \) come un campo vettoriale di \( \mathbb{R}^2 \) e sia ...
Il teorema di Casorati-Weierstrass afferma, se non vado errato, che se \( f \) possiede una singolarità essenziale in \(z_0 \) allora in un intorno bucato di \(z_0 \) e \( \forall \omega \in \mathbb{C} \) esiste una successione \( \omega_n \to z_0 \) tale che \( f(\omega_n) \to w \).
Ma.. se non vado errato \( e^{1/z} \) possiede una singolarità essenziale in zero e per il teorema di Casorati-Weierstrass esiste una successione \(w_n \to 0 \) tale che \( f(w_n)= e^{1/w_n} \to 0 \) ma non ...
Sia \( f: \mathbb{H} \to \mathbb{C} \) analitica sul semi-piano \( \mathbb{H} = \{ z : \Im(z)\geq 0 \} \) e tale che
\( f(z) \in e^{- i \pi/4} \mathbb{R} \) se \( z \in \mathbb{R} \) e tale che \( f \) non possiede un residuo all'infinito, dimostra che \( f = 0 \).
Non so se è giusto ma ad intuito direi che siccome \( f \) non possiede residui all'infinito allora \( \left| f(z) \right| = o( 1/ \left| z \right|) \).
Dovrebbe seguire da
\( res(f,\infty)=-res(f(1/z)/z^2,0)= - \lim_{z \to 0} ...
Calcolare l'integrale
\[ \int_{\mathbb{R}} \frac{dx}{(e^x+x+1)^2 + \pi^2} \]
Allora per calcolarlo utilizzeri il teorema dei residui. Pertanto estendo la funzione ad una funzione complessa ponendo
\[f(z) = \frac{1}{(e^z+z+1)^2 + \pi^2} \]
E voglio integrare sul laccetto omotopo \(\gamma_R:= C_R^+ \cup [-R,R] \) con \( R \in \mathbb{R} \) e \( C_R^+ := \partial D(0,R) \cap \mathbb{H}^+ \) dove \( \mathbb{H}^+ \) è il semi piano di parte immaginaria positiva.
Pertanto abbiamo per il teorema dei ...
Sono confuso.
\( f(z)=1/z \) ha un polo semplice in \(0 \) il cui residuo è \( 1 \).
\( f(1/z) = z \) dovrebbe essere analitica in \( 0 \) e senza residuo, pertanto la funzione \( f(z) \) dovrebbe essere essere analitica all'infinito pertanto avere residuo \(0 \).
Ma \( res(f,\infty)=res( -f(1/z)/z^2,0 ) = - res(1/z,0)= -1 \)...
Se è analitica all'infinito non dovrebbe avere residuo \(0 \) ?
Non capisco un paio di cose della dimostrazione (in grassetto i miei commenti)
Sia \( U \subsetneq \mathbb{C} \) un dominio semplicemente connesso e \( z_0 \in U \), denotiamo \( \Sigma_{U,z_0} \) l'insieme delle applicazioni olomorfe \( f:U \to \mathbb{D} \) che sono iniettive e tali che \( f(z_0)=0 \) e \(f'(z_0) >0 \). Dimostriamo che \( \Sigma_{U,z_0} \neq \emptyset \)
L'idea è che se possiamo trovare un intorno di un punto di \( a \) che dista almeno \( r \) da \(U \) allora è ...
Dimostrare che se \( f: \mathbb{C} \setminus \{ z_1, \ldots, z_n \} \to \mathbb{C} \) è olomorfa allora la somma dei residui è zero.
Sarà un problema di segno ma non lo trovo.
Dimostriamo
\[ \sum\limits_{j=1}^{n} res(f,z_j) + res(f,\infty) = 0 \]
Con \( M \) molto grande abbiamo che
Per definizione
\[ res(f,\infty) = res(- f(1/z)/z^2,0)= - \frac{1}{2 \pi i} \oint_{\partial D(0, 1/M)} \frac{f(1/z)}{z^2} dz = \frac{1}{2 \pi i } \oint_{\partial D(0,M)} f(z) dz \]
Al contempo
\[ \frac{1}{2 \pi i ...
Esistono delle funzioni olomorfe non costanti e limitati nei seguenti spazi? Se si trovale esplicitamente
i) \( f: \mathbb{C} \setminus \mathbb{R}_- \to \mathbb{C} \)
ii) \( f: \mathbb{C} \setminus \mathbb{R}_+ \to \mathbb{C} \)
iii) \( f: \mathbb{C} \setminus i\mathbb{R}_+ \to \mathbb{C} \)
iv) \( f: \mathbb{C} \setminus i\mathbb{R}_- \to \mathbb{C} \)
Io direi di sì. Per il primo spazio \( g(z) = \frac{1}{\sqrt{z} +1} \) dovrebbe andar bene in quanto la radice è ben definita su \( \mathbb{C} ...

Ciao, ho un dubbio.
Guardando sui miei appunti di analisi complessa, mi trovo il teorema di trasformazione di Fourier di una derivata:
Sia $f\in L^1(\mathbb{R})$, tale che esistano (q.o.) le sue derivate fino alla n-esima, tutte in $L^1(\mathbb{R})$. Allora $F(f^((n))(x))(\xi)=(2i\pi)^n \xi^n F(f(x))(\xi)$ (con F denoto la trasformazione di Fourier).
Ora leggo sui suddetti che queste ipotesi in realtà non sono sufficienti. Infatti per dimostrarlo utilizza (lavorando per esempio per n=1) l'integrazione per parti (che vale comunque ...
Avrei una curiosità
Se \( U \) è un semplicemente connesso che non contiene lo zero, allora esiste una determinazione del logaritmo.
Prendiamo ad esempio \( \mathbb{C} \setminus \mathbb{R}_+ \) è semplicemente connesso e non contiene lo zero, quindi possiamo trovare una determinazione del logaritmo \(L \), ma la funzione \( \arg(z) \) è discontinua su \( \mathbb{R}_- \)?
Si può quindi definire anche la radice su \( \mathbb{C} \setminus \mathbb{R}_+ \) ?
Ad esempio la radice \(n\)-esima \( ...
Dimostra che se \( f \) è una funzione intera tale che \( \Im (f) \leq ( \Re(f) )^2 \) allora abbiamo che \( f \) è costante.
Non so se sia questa la strada ma:
Abbiamo che l'intero asse immaginario superiore (ovvero \( ix \) con \( x >0 \)) non è immagine di nessun punto per la \(f \), altrimenti \( x \leq 0 \) è assurdo. Pertanto \( f(z) -i \neq 0 \) per ogni \(z \in \mathbb{C} \) dunque abbiamo che essendo \( f \) intera lo è anche \( g \) definita come:
\[ g(z) := \frac{1}{f(z)-i} \]
Se ...
Consideriamo la trasformata di Laplace
\[ \mathcal{L}f(z) = \int_{0}^{\infty} f(t) e^{-zt} dt \]
Teorema:
Sia \( f: \mathbb{R}_+ \to \mathbb{C} \) limitata e continua a pezzi. Se \( \mathcal{L}f \) si estende ad una funzione meromorfa su \( \mathbb{H}_{- \delta} := \{ z \in \mathbb{C} : \Re(z) > - \delta \}\) per \( \delta >0 \) e senza poli in \( \overline{ \mathbb{H}}_0 \) allora \( \int_{0}^{\infty} f(t) dt \) esiste e vale \( \mathcal{L}f(0 ) \)
Non capisco perché dobbiamo avere così ...