Le domandine idiote di sana
X.x ehm si scusate ..!
E' ke ho un dubbio proprio stupido e nn riesco a convincermene
5*10^(-3) ...quanto e'?
-Sana-
E' ke ho un dubbio proprio stupido e nn riesco a convincermene
5*10^(-3) ...quanto e'?
Risposte
Non considerare le mie parole fonte di scienza, ma non credo sia così.
L'operazione binaria interna viene intesa non come caso particolare (appunto, come dicevi tu, a * b = c), bensì come operazione binaria in sè...ad esempio la moltiplicazione, o l'addizione. Non ti do una moltiplicazione o un'addizione specifica, ma è l'operazione che va considerata.
-Sana-
L'operazione binaria interna viene intesa non come caso particolare (appunto, come dicevi tu, a * b = c), bensì come operazione binaria in sè...ad esempio la moltiplicazione, o l'addizione. Non ti do una moltiplicazione o un'addizione specifica, ma è l'operazione che va considerata.

è vero che un'intersezione finita di aperti può dare un chiuso?
Io sul quaderno ho appuntato "l'intersezione finita di aperti è ancora un aperto"...perchè dunque la prof poi ha detto così? Non è il contrario?
-Sana-
Io sul quaderno ho appuntato "l'intersezione finita di aperti è ancora un aperto"...perchè dunque la prof poi ha detto così? Non è il contrario?

Per quanto riguarda il fatto del gruppoide, non vedo quale sia la differenza se chiamo l'operazione somma, moltiplicazioe, composizione, ecc; se e' vero che basta "definire" un operazione binaria su un insieme per otteere un gruppoide, allora e' proprio cio' che ho fatto io.
Piu' cge altro penso che la tua definizione di gruppoide sia incom-leta, e che l'operazione binaria debba soddisfare certe proprieta'.
La risp allo tua domanda e' no: un intersezione finita di aperti e' sempre ancora un aperto.
Ma come e' possibile che fai al liceo queste cose?
Platoe
Piu' cge altro penso che la tua definizione di gruppoide sia incom-leta, e che l'operazione binaria debba soddisfare certe proprieta'.
La risp allo tua domanda e' no: un intersezione finita di aperti e' sempre ancora un aperto.
Ma come e' possibile che fai al liceo queste cose?
Platoe
finalmente ho scoperto cosè un monoide... l'ho sempre chiamato semigruppo!! R0* non può essere un gruppo perchè manca l'inverso dello 0; quindi sarà semplicemente un monoide.. per fireball: fammi sapere il contatto su MSN così ci becchiamo.
ciao, ubermensch
ciao, ubermensch
ah sì!! continuo a scoprire cose nuove!! R0 è R privato della zero... e non R compreso lo zero!! da cui il mio errore.. pardon!
Grandeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ^____________^
-Sana-

Abbiamo un triangolo equilatero ACB di lato 1(C è il vertice in alto).
Ciascun punto (o meglio, vertice) ha una sua carica:
A -> carica q1 = 1 c
B -> carica q2 = 2 c
C -> carica q3 = 1 c
dopo aver sistemato il triangolo in un piano cartesiano in modo che A e B abbiano coordinate opposte, ho trovato il baricentro col metodo della divisione della media (no?) e è venuto fuori che
G = (0 ; (1/6) sqrt3 )
(credo sia giusto).
Bisogna calcolare il Campo di G...
quindi fare la sovrapposizione degli altri tre campi...
E1 = k (q1/r^3) AG
E2 = k (q2/r^3) BG
E3 = k (q3/r^3) CG
I vettori li ho trovati:
AG= (1/2 ; 1/6 sqrt3)
BG = ( -(1/2) ; 1/6 sqrt3)
CG = (0 ; -(1/3) sqrt3)
ho sostituito i vettori alle formule dei campi di prima...
e mi è uscito fuori che il vettore risultante sia:
k (-(1/2) ; 1/6 sqrt3)
qualcuno sa dirmi se sia giusto?
Grazie ^______^
P.S: ovviamente k corrisponde alla costante 9*10^9
PPS: a prescindere se sia giusto o no il mio risultato, poi dovrei calcolare il campo non più di G ma di un punto P di coordinate (1;0).
Si fa facendo sempre la somma dei campi vero? Di tutti i campi di prima cambiando solo i vettori e cioè invece di considerare AG BG E CG considererò AP BP e CP ^^.
Grazie
*inchino teatrale*
-Sana-
Ciascun punto (o meglio, vertice) ha una sua carica:
A -> carica q1 = 1 c
B -> carica q2 = 2 c
C -> carica q3 = 1 c
dopo aver sistemato il triangolo in un piano cartesiano in modo che A e B abbiano coordinate opposte, ho trovato il baricentro col metodo della divisione della media (no?) e è venuto fuori che
G = (0 ; (1/6) sqrt3 )
(credo sia giusto).
Bisogna calcolare il Campo di G...
quindi fare la sovrapposizione degli altri tre campi...
E1 = k (q1/r^3) AG
E2 = k (q2/r^3) BG
E3 = k (q3/r^3) CG
I vettori li ho trovati:
AG= (1/2 ; 1/6 sqrt3)
BG = ( -(1/2) ; 1/6 sqrt3)
CG = (0 ; -(1/3) sqrt3)
ho sostituito i vettori alle formule dei campi di prima...
e mi è uscito fuori che il vettore risultante sia:
k (-(1/2) ; 1/6 sqrt3)
qualcuno sa dirmi se sia giusto?
Grazie ^______^
P.S: ovviamente k corrisponde alla costante 9*10^9
PPS: a prescindere se sia giusto o no il mio risultato, poi dovrei calcolare il campo non più di G ma di un punto P di coordinate (1;0).
Si fa facendo sempre la somma dei campi vero? Di tutti i campi di prima cambiando solo i vettori e cioè invece di considerare AG BG E CG considererò AP BP e CP ^^.
Grazie
*inchino teatrale*

fra l'altro volevo dire che era ora che si facesse un pò di algebra astratta al liceo, essendo (almeno le basi) molto semplici e interessante.
ciao, ubermensch
ciao, ubermensch
quote:
Originally posted by ubermensch
per fireball: fammi sapere il contatto su MSN così ci becchiamo.
ciao, ubermensch
fireball_mat@hotmail.it
ma è tutto sottolineato?
E' sottolineato perchè si tratta di un link...
puoi scriverla come una semplice casella e-mail^^
La prof non vuole correggere più il problema di cui ho parlato qualche post su..ma io voglio sapere lo stesso se è giusto uffa ;_;
-Sana-
puoi scriverla come una semplice casella e-mail^^
La prof non vuole correggere più il problema di cui ho parlato qualche post su..ma io voglio sapere lo stesso se è giusto uffa ;_;

Uber, purtroppo io non riuscirò mai a connettermi all'ora
in cui ti connetti tu (dopo le 23) per motivi che ora
non ti sto a elencare... Vedi se riesci a collegarti un po' prima.
in cui ti connetti tu (dopo le 23) per motivi che ora
non ti sto a elencare... Vedi se riesci a collegarti un po' prima.
NON CI HO CAPITO NIENTE!! FRA FIREBALL E MAT COSA C'è?? FACCIO PRIMA A DARTI IL MIO CONTATTO COSì MI AGGIUNGI TE; valerio__capraro@hotmail.it (oppure com non mi ricordo!) comunque gli spazi sono due fra valerio e capraro. comunque l'orario in cui mi connetto dipende dai giorni.. il problema è che non ho il pc a casa... comunque oggi penso che sarò connesso per un bel pò a partire da ora.
ciao, ubermensch
ciao, ubermensch
tra Fireball e mat c'era un _
-Sana-

già... fra l'altro la sottolineatura viene automatica.. e c'ho impiccia un pò le cose!
Ciao! ^______^
ho una domanda di procedura...gnahahah
beh...
lim 1/(n+1) = 2
x-> (+ inf)
la prof l'ha risolto facendo
|[1/(n+1)] - 2| < E (epsilon)
quindi
2-E < 1/(n+1) < 2+E
ed esce alla fine che
n> -1 + [1/(2+E)]
n< -1 + [1/(2-E)]
ma perchè però all'altro esercizio
lim 1/n = 0
x-> (+ inf)
ha fatto sì
|(1/n) - 0| < E
però si è occupata solo di far risultare
n > 1/E
e non, come nel caso precedente, dell'"altra parte", che a me uscirebbe:
n < -(1/E) ?
fare
-E < 1/n < E
oppure
|1/n - 0| < E occupandosi "solo" della parte più "grande"
è lo stesso?
Grazie ^_____^
*inchino*
-Sana-
ho una domanda di procedura...gnahahah
beh...
lim 1/(n+1) = 2
x-> (+ inf)
la prof l'ha risolto facendo
|[1/(n+1)] - 2| < E (epsilon)
quindi
2-E < 1/(n+1) < 2+E
ed esce alla fine che
n> -1 + [1/(2+E)]
n< -1 + [1/(2-E)]
ma perchè però all'altro esercizio
lim 1/n = 0
x-> (+ inf)
ha fatto sì
|(1/n) - 0| < E
però si è occupata solo di far risultare
n > 1/E
e non, come nel caso precedente, dell'"altra parte", che a me uscirebbe:
n < -(1/E) ?
fare
-E < 1/n < E
oppure
|1/n - 0| < E occupandosi "solo" della parte più "grande"
è lo stesso?
Grazie ^_____^
*inchino*

Perchè 1/n è sempre positivo (se n appartiene a N).
Platone
Platone
Grazie Platone ^_^
hai ragione.
E' dunque un errore procedere sempre mettendo "ambo le parti"...?
-Sana-
hai ragione.
E' dunque un errore procedere sempre mettendo "ambo le parti"...?

Ahem...scusate...
lim n = 1
x->+inf
esce
1-E < n < 1+E
io avrei detto che il limite è giusto perchè vedo nel limite che è uguale a 1...e invece la prof ha detto: il limite è sbagliato perchè non significa essere in un intorno di + infinito.
...ma come si intendono questi limiti? in effetti, la scrittina piccola sotto "lim", cosa indica? x -> + inf
indica..."man mano che x si avvicina a + inf"? no? Ma come influenza l'esercizio?
non ho capito questa cosa a priori mi sa...uff...
*devo capire bene COSA sia un limite..cosa cerca...cosa bisogna cercare...cosa indica ciascuna scritta, qualle sotto "lim", ad esempio...e come queste scritte influenzino lo svolgimento dell'esercizio..* sob
Non posso permettermi di non capire =( sono in quinto.. aiuto vi prego ;_; sooob
help !? >.<
*inchino*
-Sana-
lim n = 1
x->+inf
esce
1-E < n < 1+E
io avrei detto che il limite è giusto perchè vedo nel limite che è uguale a 1...e invece la prof ha detto: il limite è sbagliato perchè non significa essere in un intorno di + infinito.
...ma come si intendono questi limiti? in effetti, la scrittina piccola sotto "lim", cosa indica? x -> + inf
indica..."man mano che x si avvicina a + inf"? no? Ma come influenza l'esercizio?
non ho capito questa cosa a priori mi sa...uff...
*devo capire bene COSA sia un limite..cosa cerca...cosa bisogna cercare...cosa indica ciascuna scritta, qualle sotto "lim", ad esempio...e come queste scritte influenzino lo svolgimento dell'esercizio..* sob
Non posso permettermi di non capire =( sono in quinto.. aiuto vi prego ;_; sooob
help !? >.<
*inchino*

ciao!
allora,
calcolare un limite significa determinare, ove possibile, il comportamento della quantita' in questione mano a mano che la variabile (quella sotto alla parola lim) tende ad una certa quantita'.
esempio:
lim 1/n
n->+inf
diciamo che stiamo cercando di dividere una quantita' fissa, 1 in questo caso, per un numero n.
se n=2 il risultato e' 0.5, se n=3 e' 0.33333333333 se n=4 e' 0.5 ecc.
la domanda e' che succede se n diventa grandissimo?
risposta: 1/n diventa piccolissimo, formalmente si dice che
"il limite di 1/n, al tendere di n a piu' infinito, e' 0"
la definizione formale e' la seguente:
lim f(x)=L
x->a
se e solo se
per ogni E>0 esiste un delta-epsilon tale che se modulo di x meno a e' minore di delta-epsilon, allora il modulo di f(x)-L e' minore di delta-epsilon.
(Scusa ma sono nuovo qui e non so come fare per inserire i simboli matematici, spero di essere stato comunque chiaro)
in questo momento tu non sai ancora (credo) come calcolare i llimiti e quello che state facendo e' semplicemente usare la definizione per controllare l'esattezza del risultato.
ad ogni modo si ha
lim 1/(n+1)=0
n->+inf
spero di esserti stato utile...
Giuseppe
allora,
calcolare un limite significa determinare, ove possibile, il comportamento della quantita' in questione mano a mano che la variabile (quella sotto alla parola lim) tende ad una certa quantita'.
esempio:
lim 1/n
n->+inf
diciamo che stiamo cercando di dividere una quantita' fissa, 1 in questo caso, per un numero n.
se n=2 il risultato e' 0.5, se n=3 e' 0.33333333333 se n=4 e' 0.5 ecc.
la domanda e' che succede se n diventa grandissimo?
risposta: 1/n diventa piccolissimo, formalmente si dice che
"il limite di 1/n, al tendere di n a piu' infinito, e' 0"
la definizione formale e' la seguente:
lim f(x)=L
x->a
se e solo se
per ogni E>0 esiste un delta-epsilon tale che se modulo di x meno a e' minore di delta-epsilon, allora il modulo di f(x)-L e' minore di delta-epsilon.
(Scusa ma sono nuovo qui e non so come fare per inserire i simboli matematici, spero di essere stato comunque chiaro)
in questo momento tu non sai ancora (credo) come calcolare i llimiti e quello che state facendo e' semplicemente usare la definizione per controllare l'esattezza del risultato.
ad ogni modo si ha
lim 1/(n+1)=0
n->+inf
spero di esserti stato utile...
Giuseppe