Dimostrazione di Ramanujan
Qualcuno conosce la dimostrazione di Ramanujan che $1+2+3+4+5+6+7+...=-1/12$?
Grazie
Grazie

Risposte
"John_Nash":
Scusate qualcuno mi spiega questa cosa? Non ho capito, questo $sum_(i=1)^infty i=-1/12$ è vero?![]()
E' questo il problema. $sum_(i=1)^infty i=oo$ e io di questo non ho dubbi, anche se eafkuor o Ramanujan possono dire il contrario. Inoltre sono sicuro che Ramanujan non dice stranezze, e quindi credo che eafkuor abbia sbagliato a tradurre dal francese all'italiano.
Scusate qualcuno mi spiega questa cosa? Non ho capito, questo $sum_(i=1)^infty i=-1/12$ è vero?


ecco un link cercato di fretta, ma se ne trovano altri
http://perso-info.enst-bretagne.fr/~bro ... /zeta.html
http://perso-info.enst-bretagne.fr/~bro ... /zeta.html
Scusa proprio non capisco...la serie non dovrebbe divergere?
"eafkuor":
Ragazzi, mi stupisce che voi non siate a conoscenza del fatto che $sum_(i=1)^infty i=-1/12$, come dimostrato da Ramanujan nella famosa lettera che inviò a Hrdy...
Se trovo la dim. su internet la posto
$sum_(i=1)^infty i=-1/12$ è falso! Infatti la serie $sum_(i=1)^infty i$ è chiaramente divergente.
Ragazzi, mi stupisce che voi non siate a conoscenza del fatto che $sum_(i=1)^infty i=-1/12$, come dimostrato da Ramanujan nella famosa lettera che inviò a Hrdy... 
Se trovo la dim. su internet la posto

Se trovo la dim. su internet la posto

l'unica spiegazione possibile e' che sia una dimostrazione sbagliata di cui non e' facile trovare l'errore...
una specie di gioco matematico insomma
almeno questa e' l'unica possibilita' che riesco ad immaginare...
una specie di gioco matematico insomma
almeno questa e' l'unica possibilita' che riesco ad immaginare...
"blackdie":
no anch'io l'ho letto su un libro,che ora non mi ricordo...
Ah sì! Allora la somma di n numeri qualsiasi tutti positivi da un numero razionale negativo???
Com'è possibile?


no anch'io l'ho letto su un libro,che ora non mi ricordo...
Forse avrà sbagliato a scrivere.
Io ho sempre saputo che la somma dei primi n numeri naturali fosse $(n*(n+1))/2$.