Verifica validità cdf variabile aleatoria continua

elisabetta891
Ciao a tutti!
Ho un problema sulla risoluzione di questo esercizio in preparazione all'esame di statistica:

Data la funzione:

$ F_X(x) = { ( 0 rarr x<1),( alnx rarr 1<= x< 3 ),( 1 rarr x>=3):} $

si determini il valore di a ( $ ain R $ ) tale che $ F_X(x) $ sia la cdf di una variabile aleatoria continua.

La risoluzione sarà sicuramente molto semplice, ma non ne riesco a venire fuori.
Grazie in anticipo a chi mi aiuterà!

Risposte
elisabetta891
$F_X(+oo)$ deve valere 1...è qui che mi blocco.

Lo_zio_Tom
E' di una semplicità disarmante.....

$a log3=1 rarr a=1/(log3)$

ovviamente devi controllare anche le altre proprietà che sono evidentemente già soddisfatte

1) $F_X(1)=0$

2) $d/(dx)F_X(x)>=0 AAx$

elisabetta891
MI rendo conto della semplicità disarmante, ma ho la testa davvero in pallone.
Hai impostato aln3 = 1 perchè appunto ln3 > 1, quindi per definizione io so che $ F_X(+oo) $ deve essere uguale a 1?
Grazie mille per l'aiuto!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.