Somma di binomiali

LukeV98
Date le variabili aleatorie $X$ e $Y$ indipendenti e distribuite rispettivamente come binomiali di parametri $(n,p1)$ e $(m,p2)$ come posso ottenere la distribuzione della variabile aleatoria $Z=X+Y$?
Se le due probabilità fossero uguali utilizzerei la proprietà di chiusura ma visto che sono diverse non so come procedere.
Andrebbe bene anche un metodo approssimato.

Grazie

Risposte
Lo_zio_Tom
"LukeV98":

Andrebbe bene anche un metodo approssimato.

Grazie


Come buona approssimazione puoi usare questa:

$mathbb{P}[Z=z]=B(n+m;(p_1n+p_2 m)/(n+m))$

Ecco un esempio numerico:

Partendo dalle due distribuzioni binomiali indipendenti

$B(10;1/5)$ e $B(5;1/4)$

ecco i risultati delle due distribuzioni della Somma: Esatta ed Approssimata;

(cliccami per ingrandirmi)




prego

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.