Deduzione di $E{X}$ ed $E{Y}$

brownbetty1
Salve a tutti.

Ho la seguente densità di probabilità congiunta relativa alle v.a. X e Y:

$f_(XY)(x; y) = { ( k if x^2 +y^2 <= 1 ) , ( 0 if "altrimenti" ) :}$

Come si fa a dedurre, solo osservando il grafico di $f_(XY)(x; y)$, che $E{X} = E{Y} = 0$ ?

Grazie in anticipo!

Risposte
manfredi92
È simmetrica

brownbetty1
Ciao, grazie!

Puoi essere più preciso ? Ho capito che il volume sotteso da $f_(XY)$ è un cilindro "centrato nell'origine" e posizionato, ovviamente, sopra il piano $XY$. Da questa simmetria mi viene naturale affermare che $E{X} = E{Y}$, ma non capisco come si giunge a dire che sono nulli quest'ultimi.

manfredi92
la media di una distribuzione simmetrica è nulla.

Ti faccio l'esempio piu facile, $ X$ distribuita con legge Uniforme(-n,n) $-> EX = (a + b) / (2) = 0 $

brownbetty1
la media di una distribuzione simmetrica è nulla.


Perfetto, grazie mille anche per l'esempio

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.