[Teoria dei segnali]Calcolo autocorrelazione

darkair
Ciao a tutti ragazzi , innanzi tutto volevo farvi i complimenti per il forum, l'ho trovato molto utile. :-D
Volevo chiedervi un aiuto riguardante un esercizio, la traccia é la seguente:

Calcolare l'autocorrelazione del segnale y(t) ottenuto filtrando x(t) mediante un sistema con risposta impulsiva \(\displaystyle \)$h(t)=e^(-2t)u(t)$ e ESD $S_x(f)=A^(2) sinc^(2)(2f)$.

Allora ho pensato di risolvere cosi:
Siccome ho già la $S_x$ e so che per il teorema di Wiener-Kintchine -> $R_y(t)=F^(-1)[S_y(f)]$.
Poi $S_y=S_x(f)|H(f)|^2$ -> $S_y=A^2 sinc^2(2f)4/(4+(2pif)^2)$
Arrivati a qst punto bisgnorebbe trovare l'antitrasformata di $S_y(f)$ , ora il problema è mica la posso vedere come il prodotto delle singole antitrasformate notevoli? :(
Grazie..

Risposte
Ska1
Dato che $S_y = S_x |H|^2$ allora hai che $\varphi_y = \varphi_x \star \varphi_h$ quindi ti basta calcolare la convoluzione tra le autocorrelazioni di ingresso e risposta impulsiva rimanendo nel dominio temporale.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.