[Scienza delle Costruzioni] Dubbio su struttura isostatica con differenza di temperatura

cortex96

Devo risolvere questa struttura con il metodo delle forze: non avendo carichi, ho solo il sistema uno da risolvere


Imposto quindi il sistema $ { ( (Ra)/sqrt(2) -2/sqrt(5)Rd=0 ),( (Ra)/sqrt(2) +1/sqrt(5)Rd +1=0 ),( Me+2l-(Ra)/sqrt(2)3l=0) :} $
trovando $ Ra=-2sqrt(2)/3; Rd=-sqrt(5)/3; Me=0 $ ; risolvendola con un calcolatore però, trovo una differenza in Me, che viene riportato come pari a 0,33.
Sbaglio qualcosa io nell'impostare il sistema?

Risposte
cortex96
Altra domanda: come si calcola eta 1t $ eta _(1t)=int_(l)^(0)alpha t_0 N1 + alpha (Delta t)/h M1 $
Negli appunti ho questa formula, ma tra i dati mi viene data solo alpha e delta T...

SeccoJones
No è sbagliato il tuo ragionamento, una distorsione termica in una struttura iperstatica causa delle reazioni e quindi anche delle sollecitazioni, quindi lo schema zero non è identicamente nullo come dici.

cortex96
A lezione mi è stato spiegato così, cioè nel sistema zero vanno solo i carichi esterni q, mentre l'incognita iperstatica x si pone uguale a zero. Del contributo della dilatazione termica si tiene conto in $ eta _(10)+Xeta_(11)+eta_(1t)-eta_(1c)=0 $ .
Ma più chiedo cose qui, più mi rendo conto che i metodi che mi hanno spiegato non sono proprio convenzioni :lol:

cortex96
In questo caso , dopo aver trovato i diagrammi del sistema 1, calcolo l'incognita iperstatica

trovando X=-3,15 quindi i diagrammi finali dovrebbero essere uguali a quelli del sistema uno, ma moltiplicati per X. Però non sono convinto, anche perchè mi chiede di fare la verifica di sicurezza nella sezione S ma lì ho solo N=-3150 N, mentre T ed M sarebbero 0...

SeccoJones
Allora non so come ti sia stato insegnato ma in genere tutti i carichi esterni vanno nel sistema zero, ovvero quello costituito da tutti i carichi esterni e con le incognite iperstatiche poste uguali a zero. I carichi distribuiti, forze e coppie concentrate e distorszioni termiche sono tutti carichi esterni quindi vanno riportati nel sistema zero, poi come dici nel sistema 1 avremo la sola incognita iperstatica posta uguale al valore 1. Nel sistema zero (essendo adesso isostatico) la distorsione termica non genera delle reazioni ma darà comunque degli spostamenti.
Nel tuo caso specifico come incognita iperstatica hai preso la reazione verticale del doppio pendolo in $E$?

cortex96
"Secco Jones":
Allora non so come ti sia stato insegnato ma in genere tutti i carichi esterni vanno nel sistema zero, ovvero quello costituito da tutti i carichi esterni e con le incognite iperstatiche poste uguali a zero. I carichi distribuiti, forze e coppie concentrate e distorszioni termiche sono tutti carichi esterni quindi vanno riportati nel sistema zero, poi come dici nel sistema 1 avremo la sola incognita iperstatica posta uguale al valore 1. Nel sistema zero (essendo adesso isostatico) la distorsione termica non genera delle reazioni ma darà comunque degli spostamenti.
Nel tuo caso specifico come incognita iperstatica hai preso la reazione verticale del doppio pendolo in $E$?

Si, esatto. (avevo provato prima a considerare il momento come incognita, ma una equazione del momento veniva 1=0; infatti facendo i calcoli con la reazione verticale come incognita, il momento dovuto al doppio pendolo è pari a zero)

SeccoJones
"cortex96":

Si, esatto. (avevo provato prima a considerare il momento come incognita, ma una equazione del momento veniva 1=0; infatti facendo i calcoli con la reazione verticale come incognita, il momento dovuto al doppio pendolo è pari a zero)


Il momento non puoi considerarlo come incognita iperstatica perché vai a modificare la labilità della struttura

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.