Aiuto per trasformata di Fourier

ibramgaunt
Salve sono un po' in difficoltà con questa trasformata di Fourier, spero che sappiate aiutarmi...

Ho il segnale $R(t,s) = e^(-|t-s|)$ .
La sua trasformata dovrebbe essere pari a $S(ω) = 2/ (1 +(ω)^2)$.
$ω = 2pif$.

Come si giunge a questo risultato? Penso, ma non ne sono sicuro, che essendo l'autocorrelazione parte di un processo stazionario in senso lato possiamo definire $t-s=$$\tau$ e quindi calcolare la trasformata utilizzando come variabile temporale $\tau$.

Risposte
_Tipper
Dunque $R$ non è il segnale considerato, ma la sua funzione di autocorrelazione, giusto?

Se così fosse, e se il segnale fosse stazionario in senso debole, l'autocorrelazione sarebbe equivalente a $e^{-|\tau|}$, con $\tau = t - s$, e la rispettiva trasformata varrebbe $\frac{2}{1 + 4 \pi^2 f^2}$.

ibramgaunt
ma come si arriva a quel risultato? come si fa la trasformata di un valore assoluto?

_Tipper
Prova a usare la definizione di trasformata, cioè a impostare e risolvere l'integrale.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.