Tensori decomponibili
Ciao!
Se considero uno spazio vettoriale $V$ sul campo $\mathbb{K} $ con base $v_1, \cdots, v_n$ e detta $\phi_1, \cdots, \phi_n$ la base duale di $v_1, \cdots, v_n$ allora so che la forma bilineare $V^{ \star} \times V \rightarrow \mathbb{K}$ induce, per proprietà universale del prodotto tensoriale, $V^{ \star} \otimes V \rightarrow \mathbb{K} $ quindi il funzionale canonico su $End(V)$ si scrive
$sum a_{ij} \phi_i \otimes v_j \rightarrow \suma_{ij} \phi_i(v_j)= \sum a_{ii}$
che è quindi la traccia di una matrice.
Se invece volessi trovare i tensori decomponibili di $V^{ \star} \otimes V$, come potrei fare?
Grazie mille in anticipo!
Se considero uno spazio vettoriale $V$ sul campo $\mathbb{K} $ con base $v_1, \cdots, v_n$ e detta $\phi_1, \cdots, \phi_n$ la base duale di $v_1, \cdots, v_n$ allora so che la forma bilineare $V^{ \star} \times V \rightarrow \mathbb{K}$ induce, per proprietà universale del prodotto tensoriale, $V^{ \star} \otimes V \rightarrow \mathbb{K} $ quindi il funzionale canonico su $End(V)$ si scrive
$sum a_{ij} \phi_i \otimes v_j \rightarrow \suma_{ij} \phi_i(v_j)= \sum a_{ii}$
che è quindi la traccia di una matrice.
Se invece volessi trovare i tensori decomponibili di $V^{ \star} \otimes V$, come potrei fare?
Grazie mille in anticipo!