Problema di geometria proiettiva
salve a tutti, l'esame di metodi numerici per la grafica si avvicina e la tensione aumenta!
ho davanti questo problema di geometria proiettiva davanti al quale mi sono bloccato al secondo punto; me lo potreste risolvere spiegando passo per passo quello che avete fatto se non vi dispiace? grazie 1000 in anticipo!
Nello spazio proiettivo RP^3 siano fissate coordinate omogenee [x1 : x2 : x3 : x4]
1) determinare il piano proiettivo α che contiene il punto [1 : 0 : 1 : 1] e la retta proiettiva data da x1 = x2, 2x1 - x2 = x3.
e questo piano α se non sbaglio è x1 - x3 = 0;
poi chiede
2) Determinare tutte le proiettività di RP^3 che fissano puntualmente il piano α
e qui mi sono bloccato...
Come si fa??
grazie
ho davanti questo problema di geometria proiettiva davanti al quale mi sono bloccato al secondo punto; me lo potreste risolvere spiegando passo per passo quello che avete fatto se non vi dispiace? grazie 1000 in anticipo!
Nello spazio proiettivo RP^3 siano fissate coordinate omogenee [x1 : x2 : x3 : x4]
1) determinare il piano proiettivo α che contiene il punto [1 : 0 : 1 : 1] e la retta proiettiva data da x1 = x2, 2x1 - x2 = x3.
e questo piano α se non sbaglio è x1 - x3 = 0;
poi chiede
2) Determinare tutte le proiettività di RP^3 che fissano puntualmente il piano α
e qui mi sono bloccato...
Come si fa??
grazie
Risposte
Io direi di scrivere una proiettività generica e imporre che fissi il piano dato, per esempio imponendo che fissi 3 suoi punti non allineati. Allora ti dovrebbero uscire le condizioni richieste.
allora una proiettività generica è del tipo
pX1= ax1 + bx2 +cx3 + αx4
pX2= dx1 + ex2 +fx3 + βx4
pX3= gx1 + hx2 + ix3 +γx4
pX4= x4
giusto?
come faccio a imporre i tre punti non allineati del piano? e poi come la scrivo la matrice della proiettività?
grazie
pX1= ax1 + bx2 +cx3 + αx4
pX2= dx1 + ex2 +fx3 + βx4
pX3= gx1 + hx2 + ix3 +γx4
pX4= x4
giusto?
come faccio a imporre i tre punti non allineati del piano? e poi come la scrivo la matrice della proiettività?
grazie