Matrice inversa
qualcuno mi dice qual'è la matrice inversa di questa:
|7 1 3|
|3 4 6|
|2 1 9|
io l'ho calcolata ma nn vorrei avere sbagliato i conti....
graziw
|7 1 3|
|3 4 6|
|2 1 9|
io l'ho calcolata ma nn vorrei avere sbagliato i conti....
graziw
Risposte
a me viene:
A^(-1)=
1/det(A)*[30 -6 -6;-15 57 -33;-5 -5 25]
A^(-1)=
1/det(A)*[30 -6 -6;-15 57 -33;-5 -5 25]
Ottimo!! anke a me, grazie!

Per definizione, si chiama matrice inversa di una matrice quadrata A, una matrice B (se esiste) che moltiplicata a destra e a sinistra per A, dia per prodotto la matrice identica I. E cioè A·B=B·A=I
Per calcolarla quindi, basta fare così:
1) Si scrive la trasposta della matrice
2) Si sostituisce ad ogni suo elemento il suo complemento algebrico
3) Si divide la matrice ottenuta per il determinante della matrice iniziale.
Esempio con la matrice che hai scritto tu:
|7 1 3|
|3 4 6|
|2 1 9|
Si ha:
determinante = 7·(36-6)-1·(27-12)+3·(3-8) = 180
trasposta:
|7 3 2|
|1 4 1|
|3 6 9|
complemento di 7 = 4·9-1·6 = 30
complemento di 3 = -1·9-1·3 = -6
complemento di 2 = 1·6-4·3 = -6
complemento di 1 = -3·9-2·6 = -15
complemento di 4 = 7·9-2·3 = 57
complemento di 1 = -7·6-3·3 = -33
complemento di 3 = 3·1-2·4 = -5
complemento di 6 = -7·1-2·1 = -5
complemento di 9 = 7·4-3·1 = 25
Pertanto l'inversa è:
1/180 che moltiplica:
| 30 -6 -6 |
|-15 57 -33 |
| -5 -5 25 |
semplificando:
| 1/6 -1/30 -1/30 |
| -1/12 19/90 -11/60 |
| -1/36 -1/36 5/36 |
E anche la verifica (A·B=B·A=I) che non sto qui a scrivere esce.
Ciao da Davide
zut zut
Per calcolarla quindi, basta fare così:
1) Si scrive la trasposta della matrice
2) Si sostituisce ad ogni suo elemento il suo complemento algebrico
3) Si divide la matrice ottenuta per il determinante della matrice iniziale.
Esempio con la matrice che hai scritto tu:
|7 1 3|
|3 4 6|
|2 1 9|
Si ha:
determinante = 7·(36-6)-1·(27-12)+3·(3-8) = 180
trasposta:
|7 3 2|
|1 4 1|
|3 6 9|
complemento di 7 = 4·9-1·6 = 30
complemento di 3 = -1·9-1·3 = -6
complemento di 2 = 1·6-4·3 = -6
complemento di 1 = -3·9-2·6 = -15
complemento di 4 = 7·9-2·3 = 57
complemento di 1 = -7·6-3·3 = -33
complemento di 3 = 3·1-2·4 = -5
complemento di 6 = -7·1-2·1 = -5
complemento di 9 = 7·4-3·1 = 25
Pertanto l'inversa è:
1/180 che moltiplica:
| 30 -6 -6 |
|-15 57 -33 |
| -5 -5 25 |
semplificando:
| 1/6 -1/30 -1/30 |
| -1/12 19/90 -11/60 |
| -1/36 -1/36 5/36 |
E anche la verifica (A·B=B·A=I) che non sto qui a scrivere esce.
Ciao da Davide
zut zut
mm.. mi sa che sono stato preceduto 
Vabbè.. ne ho approfittato per ripetere i determinanti che a marzo c'ho gli esami ^^
In caso.. two.. is mejo ke uan
zut zut

Vabbè.. ne ho approfittato per ripetere i determinanti che a marzo c'ho gli esami ^^
In caso.. two.. is mejo ke uan

zut zut
Se hai da fare molti conti con le matrici usa qualche buon software, vedi la sezione
https://www.matematicamente.it/ocatve/index.htm
ab
https://www.matematicamente.it/ocatve/index.htm
ab