Dimostrazione che una matrice è invertibile <-> det != 0

Daffeen
Ciao a tutti, sto seguendo questa dimostrazione https://proofwiki.org/wiki/Matrix_is_Invertible_iff_Determinant_has_Multiplicative_Inverse e mi sono bloccato alla thus della sufficient condition.
Se io ho: A*B=C*D (con A,B,C,D matrici quadrate) come faccio ad avere tutto in funzione di D?
Cioè se fossimo in R (campo dei reali) potrei fare A*B*C^(-1) = D così come potrei fare C^(-1)*A*B = D.
Ma la moltiplicazione fra matrici non è commutativa, quindi c'è sostanzialmente una differenza nell'ordine in cui posiziono le matrici.
Non ho capito come fa il sito a spostare det(A) dall'altra parte, mi sapreste aiutare? Grazie mille <3

Risposte
Bokonon
det(A) è uno scalare

Daffeen
Grazie giusto....
Ma poi come fa dopo a portare "A" da sinistra della parentesi alla sua destra?

Bokonon
Lo ha pure scritto...
$A*adj(A)=adj(A)*A$

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.