Calcolo matrice associata ad endomorfismo
Salve,
oggi mi sono imbattuto in un esercizio, credo, banale ma che comunque mi ha creato dei grattacapi non sapendo come si risolve!
Assegnato il seguente endomorfismo f: R^3-> R^3 definito dalle relazioni:
f(1,2,2) = ( 1,3 ,3 )
f(1,-1,-1) = (1 , -3 , -3 )
f(0,1,2) = ( 0, h+1, 3 )
con h parametro reale, determinare una matrice associata a f rispetto alla stessa base scelta nel dominio e nel codominio.
GRAZIE in ANTICIPO!
oggi mi sono imbattuto in un esercizio, credo, banale ma che comunque mi ha creato dei grattacapi non sapendo come si risolve!
Assegnato il seguente endomorfismo f: R^3-> R^3 definito dalle relazioni:
f(1,2,2) = ( 1,3 ,3 )
f(1,-1,-1) = (1 , -3 , -3 )
f(0,1,2) = ( 0, h+1, 3 )
con h parametro reale, determinare una matrice associata a f rispetto alla stessa base scelta nel dominio e nel codominio.
GRAZIE in ANTICIPO!
Risposte
Scusa ma non è chiara la domanda. Vuoi trovare la matrice che rappresenta $f$ e che ad ogni vettore scritto con le coordinate della base del dominio associ l'immagine mediante $f$ scritta con le coordinate della base del codominio? Se è così allora la matrice che stai cercando è la matrice identica.