Termodinamica

lellog
Ciao avevo un dubbio su un' esercizio di termodinamica...
C' è una macchina reversibile che scambia calore con un termostato a temperatura T0 ed un recipiente(capacità termica trascurabile) contenente n moli di gas ideale a temperatura iniziale T1 (T1 Io l'ho trovato, solamente che non viene un valore >0, ma viene minore.. tuttavia i calcoli sono giusti...
Grazie in anticipo.

Risposte
Faussone
Devi descrivere il tuo tentativo di soluzione, prima che qualcuno possa aiutarti.
Comunque io inizierei col chiedermi che tipo di macchina dovrebbe lavorare tra il termostato e il recipiente per estrarre il massimo lavoro disponibile e da lì farei una serie di ragionamenti...

lellog
Grazie per la risposta e scusa se non ho scritto il procedimento, sono nuovo e non sono molto pratico.
Allora io ho calcolato una serie di dati :
1)volume e temperatura finali del recipiente, Tf= $T0$ e Vf= $ nR*(T0)/(P0) $ per quanto riguarda il recipiente;
2)calore assorbito Qh e ceduto Qc dalla macchina, Qh= $ ncpT0*log((T0)/(T1)) $ e Qc= $ ncp*(T0-T1) $;
da tutti questi risultati ho trovato il lavoro, applicando il primo principio della termodinamica e notando che il $ \Delta $int di un ciclo è pari a 0.
Quindi L=Qh-Qc= $ ncp[T0*log((T0)/(T1))-T0+T1] $ $>0$
Però sostituendo T0 e T1 con alcuni valori non torna L>0.

Ah Faussone :D , per quanto riguarda quale tipo di macchina dovrebbe lavorare tra il termostato e il recipiente per estrarre il massimo lavoro disponibile non so risponderti, ma di sicuro non è una macchina di Carnot.

Faussone
"lellog":
..........ma di sicuro non è una macchina di Carnot.

Why not?

lellog
Ah si scusa...hai ragione la posso vedere come una macchina di Carnot!! Ti ho risposto di no, perchè a lezione ci è stato detto (forse per semplicità) che le uniche macchine in grado di avere un rendimento come quella di Carnot sono quelle composte da due termostati, e non è questo il caso.

Faussone
Sì la macchina può essere considerata come una macchina di Carnot un po' particolare: una delle due sorgenti infatti man mano aumenta di temperatura.
Si possono immaginare quindi dei cicli di Carnot infinitesimi in cui ad ogni ciclo una infinitesima quantità di calore è assorbita dalla sorgente a temperatura maggiore e ceduta alla sorgente a temperatura minore.
Via via che i cicli procedono le temperature delle due sorgenti si avvicineranno sempre di più e alla fine saranno le stesse e tutto il lavoro possibile sarà stato estratto.
Questo è il modo in cui si estrae il massimo lavoro.

A questo punto visto che si ha un ciclo di Carnot reversibile, si può osservare che la variazione di entropia dell'universo tra inizio e fine deve essere nulla e da qui si può calcolare quanto deve valere il calore assorbito dalla sorgente a temperatura maggiore (quello ceduto alla sorgente a temperatura minore è noto visto che è nota la temperatura finale) e quindi alla fine, noto calore assorbito e ceduto, si può calcolare il lavoro estratto.

lellog
Ok grazie mille :D... Per fare tutti i calcoli che ho scritto sopra, ho fatto tutte queste considerazioni che hai fatto Tu e infatti mi sono trovato il calore ceduto e quello assorbito. Ma quello che non capisco è perchè il lavoro trovato non rispetta la condizione L>0.

Faussone
:shock:
Non avevo capito nulla di come avevi tirato fuori quelle formule, se non scrivi due righe su quello che intendi.... Le formule non permettono di capire quello che hai in testa, a meno di rifare i conti e confrontarli con le tue formule, cosa non sempre è possibile fare solo leggendo un messaggio.
Ricordati che spiegare bene una soluzione ad un problema fa parte della soluzione stessa!

In ogni caso il lavoro ricavato è praticamente sempre positivo, sei sicuro di aver sostituito bene le temperature in kelvin?

lellog
No...ho sostituito le temperatura in gradi(non sono abituato a sostituire valori in quanto svolgiamo esercizi senza numeri)...errore mio allora.
Comunque grazie per il tempo che mi hai concesso e per le delucidazioni che mi hai dato. E scusa ancora per la mancanza di spiegazione nello scrivere il post. :D

Faussone
"lellog":
No...ho sostituito le temperatura in gradi(non sono abituato a sostituire valori in quanto svolgiamo esercizi senza numeri)...errore mio allora.
Comunque grazie per il tempo che mi hai concesso e per le delucidazioni che mi hai dato. E scusa ancora per la mancanza di spiegazione nello scrivere il post. :D


Prego.
Ahiahi, :-) sostituire la temperatura in gradi C sarebbe un grave errore! A questo punto chiediti perché non puoi usare i gradi C.
In ogni caso la formula a cui sei arrivato è corretta, e il lavoro verrà sempre maggiore di zero se $T_0>T_1$.

lellog
Bhe pensando sul perchè vada usata la temperatura in Kelvin, mi viene in mente che è una scala termometrica assoluta (se prendiamo diversi gas, essi hanno differenti pressioni a ogni data temperatura, tuttavia se si raffreddano si osserva che tendono tutti alla stessa temperatura (precisamente a -273.15 °C) quando la pressione tende a zero), che ha sempre valori maggiori di zero(zero assoluto = -273.15 C) e che non dipende dal sistema di riferimento scelto. Spero sia corretto... :D
Ah inoltre essendo un gas ideale, per definizione si usa la scala kelvin.

Faussone
Corretto quello che hai scritto, ma non hai indicato il motivo alla radice.

Quella espressione che hai ricavato deriva dall'impiego del concetto di entropia termodinamica che a deriva dalla uguaglianza di Clausius che deriva dalla macchina di Carnot reversibile che, usando l'espressione di calore e lavoro scambiato lungo le isoterme per gas perfetti, deve far uso della temperatura termodinamica in kelvin..

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.