Problema cinematica

Leibnitz1
Salve raga, ho bisogno di un aiutino:
Un aereo si muove con v costante 360km/h con angolo -pi/6 costante rispetto all'orizz. A y=800m sgancia una bomba e dopo 1s un altra. Si calcoli la distanza al suolo tra le due (senza atriti etc...)

Il risultato è 54 ma io mi trovo tipo 111, credo che il mio errore sia non tanto nei due moti delle bombe tanto nella distanza x percorsa dall'aereo che mi viene 86m (di sgancio tra le due bombe): calcolata come x(t)=v0·t·cos-30
anche se credo che non sia corretto.

Risposte
mgrau
"Leibnitz":
credo che il mio errore sia non tanto nei due moti delle bombe tanto nella distanza x percorsa dall'aereo che mi viene 86m (di sgancio tra le due bombe)

86 m è giusto. Hai tenuto conto anche della differente quota (50 m di meno) ? Fai vedere il resto dei calcoli?

Leibnitz1
se 86 è giusto mi trovo un numero negativo:
con la formula -v^2/g·sin-30·cos-30·{1+[1+(2gh)/(v·sin-30)^2]^1/2}
mi trovo 1632 prima bomba 1600 seconda...

mgrau
"Leibnitz":
-v^2/g·sin-30·cos-30·{1+[1+(2gh)/(v·sin-30)^2]^(1/2)}

???
Prova a fare un passo alla volta, invece di usare formule magiche...
Prima bomba:
inizia a 800m di altezza
ha una velocità orizzontale $v_x = v*cos(30) = 86.6m/s$
e una velocità verticale $v_y = v*sin(30) = 50 m/s$
Il tempo di caduta si ricava da $800 = v_y*t + 1/2g t^2 -> t_1 = 8.66s$
lo spazio percorso in orizzontale è $s_1 = v_x*t_1 = 750m$
Seconda bomba:
stessa cosa, solo che parte da 750m, tempo $t_2 = 8,28s$
spazio percorso in orizzontale, tenendo conto del secondo di ritardo al lancio $s_2 = v_x*(1 + t_2) = 804m$
differenza fra i punti di caduta $54m$

Leibnitz1
nessuna formula magica, formula presa dal mencuccini e ovviamente da me controllata...
dall'equazione x(t) si estrapola il tempo che si mette in y(t) ottenendo la traiettoria y(x)=-1/2g·(x/v·cos)^2-x·Tg+h
uguagliando y=0 trovi nell'equazione di 2 grado una soluzione per x (quelli che ho scritto).
Però è strano poichè il tuo metodo è altresi corretto e ti trovi, ma continuo a non vedere il mio errore :(

mgrau
"non chiederci la formula che mondi possa aprirti..." :)

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.