Moto Circolare
"Una particella si muova su una circonferenza di raggio 50 cm con accelerazione tangenziale costante.La particella parte nell'istante \(\displaystyle t=0 \) dalla quiete.Nell'istante \(\displaystyle t1 \) la sua accellerazione ha un modulo di \(\displaystyle 2m/s \) e forma un angolo di \(\displaystyle 60° \)con la tangente della circonferenza.
Calcolare l'accelerazione tangenziale e centripeta,L'istante t1e lo spazio percorso nell'intervallo t-t1"
Potete aiutarmi grazie mille.
Mi spiegate quando parla di accelerazione con modulo 2 m/s a quale accelerazione si riferisce grazie
Calcolare l'accelerazione tangenziale e centripeta,L'istante t1e lo spazio percorso nell'intervallo t-t1"
Potete aiutarmi grazie mille.
Mi spiegate quando parla di accelerazione con modulo 2 m/s a quale accelerazione si riferisce grazie
Risposte
"paretano":
... Mi spiegate quando parla di accelerazione con modulo 2 m/s a quale accelerazione si riferisce ...
All'accelerazione della particella ...

Ovviamente può essere scomposta nelle sue componenti tangenziali e radiali, perciò avremo che $a_t=a*cos60°$ e $a_c=a*sen60°$.
Usando le equazioni del moto avremo $a_c=v_(t_1)^2/r$ e $v_(t_1)=a_t*t_1$ e quindi $a_c=(a_t*t_1)^2/r$ da cui è possibile ricavare $t_1$.
Ed infine $theta=(a_t*t_1^2)/2$ e quindi $d=theta*r$.
Cordialmente, Alex
Grazie mille alex mi hai chiarito una cosa che non sapevo a chi chiedere



