Esercizio induttanza

folgore1
Ciao a tutti!!per favore qualcuno può dirmi se ho svolto bene questo esercizio:
Un generatore di f.e.m. $epslon=3V$ viene collegato all’istante $t=0$ a una bobina di induttanza $L=0,5 mH$ e resistenza $R=4 ohm$.Calcolare l’energia magnetica $U$ immagazzinata nell’induttore quando esso è percorso da una corrente $i$ pari alla metà del valore di regime $i_m$.Determinare inoltre all’istante t in cui $U(t)$ è pari a $0,81$ volte il suo valore massimo $U_m$.

Io l’ho svolto così:

Poiché il valore della corrente a regime è uguale a $i_oo=epslon/R=0.75 A$ e la formula dell’energia magnetica è la seguente: $U_m=(1/2)*L*i^2$
Abbiamo che l’energia sarà:
$U=(1/2)*L*(i_oo/2)^2=3,5*10^-5 J$

Ora per determinare all’istante t in cui $U(t)$ è pari a $0,81$ volte il suo valore massimo $U_m$:

essendo $i(t)=epslon/R*(1-e^-t/tao)$ dove $tao=L/R$

ho posto $0,81=(1-e^-t/tao)^2$

ma ora per ricavare $t$ devo risolvere questa equazione esponenziale???
Ringrazio anticipatamente chi mi risponderà!!!

Risposte
_nicola de rosa
"folgore":
Ciao a tutti!!per favore qualcuno può dirmi se ho svolto bene questo esercizio:
Un generatore di f.e.m. $epslon=3V$ viene collegato all’istante $t=0$ a una bobina di induttanza $L=0,5 mH$ e resistenza $R=4 ohm$.Calcolare l’energia magnetica $U$ immagazzinata nell’induttore quando esso è percorso da una corrente $i$ pari alla metà del valore di regime $i_m$.Determinare inoltre all’istante t in cui $U(t)$ è pari a $0,81$ volte il suo valore massimo $U_m$.

Io l’ho svolto così:

Poiché il valore della corrente a regime è uguale a $i_oo=epslon/R=0.75 A$ e la formula dell’energia magnetica è la seguente: $U_m=(1/2)*L*i^2$
Abbiamo che l’energia sarà:
$U=(1/2)*L*(i_oo/2)^2=3,5*10^-5 J$

Ora per determinare all’istante t in cui $U(t)$ è pari a $0,81$ volte il suo valore massimo $U_m$:

essendo $i(t)=epslon/R*(1-e^-t/tao)$ dove $tao=L/R$

ho posto $0,81=(1-e^-t/tao)^2$

ma ora per ricavare $t$ devo risolvere questa equazione esponenziale???
Ringrazio anticipatamente chi mi risponderà!!!

va bene; devi risolvere l'equazione esponenziale

_nicola de rosa
t'ho risposto sopra

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.