Centro di spinta

Pivot1
Ciao a tutti. Mi aiutate con questo esercizio? In particolare mi sono bloccato sul calcolo del centro di spinta....



La spinta dell'acqua su $CD$ mi viene $S_C _D = 655500N = 65,5 t$

Ora per il calcolo del centro di spinta, dalla teoria si dovrebbe calcolare il momento d'inerzia $I$ della superficie rispetto alla retta di sponda e il momento centrifugo $I_x_y$ delle superficie rispetto agli assi $x$ e $y$. E quindi in definitiva mi trovo:

$epsilon = I/M$

$eta = (I_x _y) / M$

e quindi come si procede? grazie

Risposte
*pizzaf40
Non ricordo com'era il modo formale di risolvere questo in idraulica, ma intuitivamente mi verrebbe da immaginare il lato $CD$ investito da pressione costante pari a quella in $C$ (quindi con risultatnte a metà tra $C$ e $D$) e una distribuzione triangolare di pressione dovuta all'abbassamento di quota con valore di picco pari alla differenza tra $p_C$ e $p_D$ (quindi con risultante a $2/3$ della distanza tra $C$ e $D$, verso $D$ naturalmente). Poi fai un composizione geometrica pesata delle risultanti (la centrale e quella dovuta alla distribuzione triangolare) e ottieni il punto di applicazione della forza totale sul tratto $CD$. Poi, in base a dove è incernierato il lato, vedi il momento risultante...

Il metodo formale non lo ricordo, ma spero ti possa esser utile anche questo...

Enrico84
Questo topic di fisica deve andare insieme a tutti gli altri di fisica, non in questa sezione

*pizzaf40
"Enrico84":
Questo topic di fisica deve andare insieme a tutti gli altri di fisica, non in questa sezione


Ah, io non ho capacità di spostarlo..

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.