Nodi di chebychev
qualcuno sa spiegarmi perchè i nodi di chebychev minimizzano la quantita $max_[-1,1]\abs((x-x_0)*...*(x-x_n))$? grazie
Risposte
Hai qualche libro di testo consigliato? Se sì, di sicuro quella dimostrazione c'è. Magari puoi postare i passaggi che non ti tornano
sui testi che ho consultato vienesemplicemente detto che la costante di lebesgue è logaritmica.
ho una dimostrazione sul quaderno ma ma non mi è chiara, a grandi linee procede così: suppongo per assurdo che esista una distribuzione di nodi per cui quella quantità è più piccola, considero il polinomio dato dalla differenza delle due quantità, allora sarebbe di grado n con n+1 zeri, assurdo. Non capisco perchè vado a considerare la differenza se suppongo una disuguaglianza stretta
ho una dimostrazione sul quaderno ma ma non mi è chiara, a grandi linee procede così: suppongo per assurdo che esista una distribuzione di nodi per cui quella quantità è più piccola, considero il polinomio dato dalla differenza delle due quantità, allora sarebbe di grado n con n+1 zeri, assurdo. Non capisco perchè vado a considerare la differenza se suppongo una disuguaglianza stretta
https://www.math.ucdavis.edu/~bremer/cl ... ture15.pdf
Slide 8 in poi c'è quello che intendi. Ti torna ora?
Slide 8 in poi c'è quello che intendi. Ti torna ora?
grazie
Prego. Se c'è qualcosa che non ti torna ancora, scrivi pure
