Matrice bene o mal condizionata

Scofield88
Ciao,

per trovare il condizionamento di una matrice e dire se è bene o mal condizionata devo ricavare il numero di condizione K(A) (e fin qui ci siamo). Ma non ho ben capito poi come faccio a dire se la matrice è ben o mal condizionata.
La teoria dice che per K(A) piccolo n^p con p=0,1,2,3 è ben condizionata, mentre per K(A) grande 10^n è mal condizionata.
(piccolo e grande sono a discrezione?!?!?!)

Su un sito ho letto che se K(A) è circa uguale a 1 la matrice è ben condizionata, mentre se K(A) >> 1 è mal condionata. Volevo avere la conferma dalla prof, così le ho scritto un'email:
Risposta:
"Il miglior indice di condizionamento è 1 ma per decidere se una matrice di ordine n e' mal condizionata bisogna confrontare con 10^n. È l' andamento della curva per Valori di n crescenti a dare questa informazione".
Sono andato nelle slide della mia prof e di questa curva nemmeno l'ombra. Sapete aiutarmi?! Grazie :smt023

Risposte
Malachite1
In effetti neanche io ci sto capendo molto. Ad esempio mi trovo un esercizio dove ho una matrice A 3x3 con K(A) dell'ordine di 10^8 il che suggerirebbe che è malcondizionata (o no?). Invece se introduco una perturbazione dell'ordine di 10^-2 sul vettore dei termini noti b ne ottenga una dello stesso ordine sul vettore x e conseguentemente l'errore relativo su x è uguale a quello su b. Mi hanno insegnato invece che se la matrice è malcondizionata a piccole perturbazioni sui dati corrispondono grandi perturbazioni sui risultati ma qui non succede!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.