Trasformata di Fourier
Mi sto apprestando alle trasformate di Fourier ma mi trovo un pochino in difficoltà. Ora posto un esercizio di cui non capisco alcuni passaggi:
$ F[ (sin(pi*t))/(t^2-1)]$
Allora osservo che il segnale e` sommabile quindi calcolo la trasformata attraverso la definizione e mi trovo:
$ 1/(2j) int_(-oo )^(+oo ) (e^(j(pi - w)t) - e^(-j(pi+w)t))/(t^2-1) $
Calcolo questo integrale con il metodo dei residui.
e il mio libro riporta come risultato $ -(pi)/(2j) [ sgn(w-pi)*sin( w- pi) - sgn(w+pi)*sin(w+pi)]$
A cosa serve la funzione sgn? Da dove viene fuori?
$ F[ (sin(pi*t))/(t^2-1)]$
Allora osservo che il segnale e` sommabile quindi calcolo la trasformata attraverso la definizione e mi trovo:
$ 1/(2j) int_(-oo )^(+oo ) (e^(j(pi - w)t) - e^(-j(pi+w)t))/(t^2-1) $
Calcolo questo integrale con il metodo dei residui.
e il mio libro riporta come risultato $ -(pi)/(2j) [ sgn(w-pi)*sin( w- pi) - sgn(w+pi)*sin(w+pi)]$
A cosa serve la funzione sgn? Da dove viene fuori?
Risposte
Non capisco perchè vuoi farti del male facendo l'integrale. Puoi scriverti il seno in notazione esponenziale complessa, e poi applicare il ritardo. Per quanto riguarda la funzione segno, essa deriva dal trasformare la quantità 1/t in ambito distribuzionale.