Teoria analisi 1,2 per orale

mobley
Ragazzi, ieri ho fatto l'esame di programmazione (che in sostanza non era altro che la traduzione in linguaggio Matlab di calcoli ed esercizi del tutto tipici di analisi 1 e 2). Il programma si suddivide in due parti, una parte di matematica "pura" e l'altra di linguaggio di programmazione, e per la parte di matematica il programma è il seguente:

1. Elementi di Algebra Lineare: spazi metrici e distanza Euclidea, spazi vettoriali, sottospazi, sistemi di generatori e basi, funzioni lineari, autovalori e autovettori, forme quadratiche, diagonalizzazione.
2. Funzioni di più variabili: intorno sferico, limiti e continuità, funzioni parzialmente derivabili, funzioni differenziabili, piano tangente, matrice Hessiana.
3. Ottimizzazione in più variabili: alcuni esempi (tra quelli del testo di Sundaram: massimizzazione dell’utilità, massimizzazione dei profitti, minimizzazione dei costi, selezione di portafoglio, approvvigionamento ottimo di beni pubblici), esistenza di soluzioni, Teorema di Weierstrass, condizione del primo ordine, condizione del secondo ordine, applicazione ai modelli.
4. Ottimizzazione Vincolata con Vincoli Rigidi: Teorema di Lagrange, condizione del secondo ordine (Hessiano Orlato), applicazioni economiche.
5. Ottimizzazione Vincolata con Vincoli Rilassati: Teorema di Kuhn-Tucker, applicazioni economiche.
6. Metodi Risolutivi di Equazioni Differenziali: equazioni differenziali del primo ordine (autonome, lineari, di Bernoulli, a variabili separabili, omogenee), equazioni differenziali del secondo ordine, equazioni differenziali lineari a coefficienti costanti di ordine n, integrale generale e integrale particolare. Cenni di sistemi di equazioni differenziali lineari a coefficienti costanti.

Ora, premetto che l'esito è stato buono ma pensavo di provare a fare l'orale il quale, a detta del docente, verterà soltanto sulla parte di matematica. Ora, considerando che non verrà richiesto lo svolgimento di esercizi ma soltanto teoria e che la convocazione è prevista per dopodomani, quali sono gli argomenti che a vostro giudizio c'è più probabilità che possano esser chiesti tra quelli suelencati? Purtroppo il tempo è poco e non ho tempo per approfondire tutto…

Grazie mille a chiunque vorrà rispondermi!

P.S.: Se avete qualche appuntino che avete usato per gli orali e che riguarda questi argomenti condividete, il buon Dio ripaga sempre le buone azioni :-D

Risposte
vict85
Che strano esame di programmazione. Quegli argomenti non dovrebbero essere richiesti in altri corsi? Che corso di laurea fai?

Comunque, se lo scritto è andato bene, allora penso che il professore farà la prima domanda sui punti 3-6. Ma non penso che ci siano davvero cose che hanno più probabilità di altre. Dovresti chiedere a chi ha sostenuto l'orale di quel corso e con quel professore.

mobley
Guarda, non dirlo a me. Studio finanza. In realtà gran parte degli argomenti di analisi servivano ai fini dell'esame (ad es. equazioni differenziali, la parte di algebra lineare per applicare la fattorizzazione di Cholesky, costruire matrici delle traiettorie di processi, Crank-Nicholson etc.), tuttavia non pensavo di dover ristudiare TUTTA la teoria di analisi per l'orale… Lui ha detto che potrebbe chiedere "tutto" ma no esercizi pratici. In più mettici il fatto che l'esame è stato costruito da due docenti insieme, uno di analisi "pura" e un altro di metodi computazionali per la finanza quindi eccollà che l'esame implica analisi a gògò.

dissonance
Ah ecco, adesso capisco le domande che ponevi. Complimenti, stai studiando cose difficili per tutti, e ancora più per una persona che non ha una formazione specifica da matematico. Negli ultimi anni ho conosciuto vari economisti ed economiste, in corsi di matematica a cui ho assistito, e in tutti i casi era gente motivata che lottava con le unghie e con i denti. Molto più motivati degli studenti di matematica.

Comunque, venendo alla domanda: il tempo è proprio poco. Quali argomenti siano più importanti è impossibile dirlo e ripassare tutto è fuori discussione. Una possibilità interessante, quindi, è non ripassare proprio niente e come va, va.

Oppure, se non riesci a stare tranquillo, rivediti le cose di base, quelle di matematica elementare. Ti sarai accorto di come siamo rompipalle noi matematici (io in particolare sto sempre qua sopra a dire alla gente che il linguaggio non è preciso blablabla :-) ). Se sbagli su una cosa di base, è meno perdonabile che sbagliare su una cosa avanzata. Parlo delle definizioni fondamentali di analisi e di algebra lineare.

Magari rivediti le dimostrazioni dei moltiplicatori di Lagrange, che non sono troppo difficili e quindi sono papabili per una domanda all'orale. Ma non esagerare, non ti stare a stressare troppo, hai già fatto molto.

mobley
Grazie mille dissonance, cercherò di fare il possibile :) Per definizioni di analisi intendi continuità, derivabilita, basi, generatori, matrici simili, invertibili etc? Se così fosse, ricapitolando quello che mi hai detto tu e vict85... Lagrange, equazioni differenziali e tutta la parte di algebra lineare. Mica poco in un giorno e mezzo!

dissonance
Ma si, hai ragione, se inizi a considerare TUTTE le basi diventa una mostruosità. Scegli uno o due argomenti "superiori" e ripassateli, allora. Ma non andare troppo sull'avanzato.

mobley
Allora ragazzi, mi sono ritagliato una giornata in biblioteca in vista dell'orale per cercare di fare il punto della situazione e raccogliere in questo post tutte le definizioni e i concetti papabili di domanda. Vi pregherei quindi, se poteste, di leggere con attenzione quanto andrò ad elencare e di correggere eventuali errori. Mi scuso davvero per la lunghezza che richiederà il tutto ma mi comprenderete… Gli argomenti sono tanti! Veniamo a noi :D

PARTE MATRICIALE

Siano $m$ ed $n$ due interi positivi con $m\cdot n$ numeri reali. Allora:
1) Matrice quadrata una matrice $mxx n$ tale per cui $m=n$.
2) Matrice rettangolare una matrice $mxx n$ tale per cui $m!=n$.
3) Matrice riga una matrice formata da una sola riga, del tipo $(1,n)$.
4) Matrice colonna una matrice formata da una sola colonna, del tipo $(n,1)$.
5) Matrice nulla una matrice i cui elementi sono tutti uguali a zero.
6) Due matrici $A$ e $B$ si dicono uguali se sono dello stesso tipo (cioè se hanno lo stesso numero di righe e colonne), e tutti gli elementi corrispondenti uguali.
7) Matrice opposta di $A$, denotata con $-A$, se è dello stesso tipo di $A$ ma elementi opposti rispetto a quelli di $A$.
8) Matrice trasposta di $A$, denotata con $A^T$, quella ottenuta scambiando ordinatamente righe e colonne.
9) Diagonale principale di una matrice quadrata l'insieme degli elementi che hanno indici uguali (${a_(11), … ,a_(nn)}$).
10) Diagonale secondaria di una matrice quadrata l'insieme degli elementi ${a_(1n), ... , a_(n1)}$.
11) Matrice simmetrica se $A=A^T$, cioè se $a_(ij)=a_(j1),\forall i,j=1, ... , n$.
12) Matrice antisimmetrica se $A=-A^T$, cioè se $a_(ij)=-a_(j1),\forall i,j=1, ... , n$.
13) Matrice diagonale se tutti i suoi elementi sono zero ad eccezione di quelli sulla diagonale principale.
14) Matrice triangolare superiore se tutti gli elementi posti al di sotto della diagonale principale sono nulli.
15) Matrice triangolare inferiore se tutti gli elementi posti al di sopra della diagonale principale sono nulli.
16) Matrice unità/Matrice identità se tutti gli elementi posti sulla diagonale principale sono $1$.
17) Matrice ortogonale se $A^T\cdot A=I_N$ o, equivalentemente, $A^T=A^(-1)$.
18) Matrice singolare se $det(A)=0$.
19) Matrice non singolare se $det(A)!=0$.
20) Matrice inversa, denotata con $A^(-1)$, la matrice quadrata e dello stesso ordine di $A$ tale che $A\cdot A^(-1)=I_N$.
21) Matrice invertibile se è non singolare.
22) Due matrici si dicono conformabili se il numero delle colonne della prima è uguale al numero delle righe della seconda.
23) Due matrici si dicono simili se sono dello stesso ordine e se esiste una matrice invertibile $P$ tale che $A=PBP^(-1)$.
24) Matrice diagonalizzabile se è simile ad una matrice diagonale, cioè se esiste una matrice diagonale $D$ e una matrice non singolare $P$ tale che $A=PDP^(-1)$.
25) Rango di una matrice il massimo ordine dei minori non nulli da essa estraibili.
26) Complemento algebrico il minore non nullo di una matrice preceduto da $(-1)^(i+j)$, con $i$ posizione sulla riga e $j$ posizione sulla colonna.


Detto questo valgono le seguenti proprietà/caratteristiche:
- $k(A+B)=kA+kB$ (proprietà distributiva di uno scalare per una somma di matrici).
- $(k+j)A=kA+jA$ (proprietà distributiva di una matrice per una somma di scalari).
- $k(jA)=(kj)A=j(kA)$ (proprietà associativa del prodotto matrice per scalare).
- $A+B=B+A$ (proprietà commutativa della somma).
- $A+(B+C)=(A+B)+C$ (proprietà associativa della somma).
- $A\cdot B\cdot C=A\cdot (B\cdot C)=(A\cdot B)\cdot C$ (proprietà associativa a patto che $A=(mxx n)$, $B=(nxx p)$, $C=(p\cdot q)$).
- $I_N=I_N^(-1)=1$ e $det(I_N)=1$.
- $A\cdot I_N=I_N\cdot A=ArArr A=I_N$.
- $det(A^2)=(det(A))^2$ (per il Teorema di Binet).
- $det(A)=det(PBP^(-1))=det(P)det(B)det(P^(-1))=det(P)det(P^(-1))det(B)=det(P) 1/(det(P)) det(B)=det(B)$ (per il Teorema di Binet).
- $det(A)=det(I_N)=det(A\cdot A^(-1))=det(A)det(A^(-1))=det(A) 1/(det(A))=1$ (per il Teorema di Binet).
- $A A^T=A^TA=I_N$.
- $A\cdot B=B \cdot A$ se $A$ è non singolare.
- la matrice nulla ha infiniti autovettori.
- ortogonalità tra vettori $rArr$ indipendenza, ma non è vero il contrario.
- gli autovalori di $A$ ed $A^T$ sono gli stessi, quindi hanno la stessa matrice diagonale.
- il determinante di una matrice e della sua trasposta sono uguali.
- se tutti gli elementi di una linea (riga o colonna) sono nulli, il determinante è zero.
- se una matrice ha due linee uguali o proporzionali, il determinante è zero.
- se si scambiano tra loro due righe o colonne di una matrice, il determinante cambia di segno.
- il determinante di una matrice diagonale è il prodotto degli elementi posti sulla diagonale principale.
- se una matrice è simmetrica gli autovalori sono certamente reali ma non necessariamente distinti.

PARTE ALGEBRA LINEARE

Seguono le definizioni di:
1) Gruppo abeliano -> E' una struttura algebrica composta da un insieme non vuoto $X$ e da un'operazione interna che gode della proprietà commutativa, oltre che dall'esistenza dell'elemento neutro (ad es. $(X,+)$ oppure $(X,*)$). Infatti per $(X,+)$ valgono le proprietà $a+b=b+a$ e $a+0=0+a=a$.
2) Semigruppo -> E' una struttura algebrica composta da un insieme non vuoi $X$ e da un'operazione interna che gode della proprietà associativa (di nuovo, $(X,+)$ oppure $(X,*)$). Infatti per $(X,*)$ vale la proprietà $a*b*c=a*(b*c)=(a*b)*c$.
3) Anello -> E' una struttura algebrica composta da un insieme non vuoto $X$ e da due operazione interne $+$ e $*$ che godono della proprietà commutativa e associativa, della proprietà distributiva del prodotto, oltre che dall'esistenza dell'elemento neutro e dell'opposto.
4) Campo -> E' una struttura algebrica composta da un insieme non vuoto $X$ e da due operazione interne $+$ e $*$ che godono della proprietà commutativa e associativa, della proprietà distributiva del prodotto, oltre che dall'esistenza dell'elemento neutro, dell'opposto e dell'inverso moltiplicativo.
5) Spazio vettoriale -> Si dice che $(V,+; o. )$ è uno spazio vettoriale su campo $K$ se, dati $\forall \alpha,\beta \in K$ e $\forall \bar(x), \bar(y)\in V$, valgono le seguenti proprietà:
- $\alpha o. (\beta o. x)= (\alpha \cdot \beta) o. x$
- $(\alpha+\beta)o. x= (\alpha o. x)+(\beta o. x)$
- $\alpha o. (x\cdot y)=(\alpha o. x)+(\alpha o. y)$
- $\bar(e)_(.) o. x=x$
con $\bar(e).$ generico versore e $o. : Kxx V->V$ prodotto scalare per vettore.
6) Sistema di generatori -> Sia $(V,+; o.)$ uno spazio vettoriale su campo $K$. Si definisce sistema di generatori di $V$ un qualsiasi insieme di vettori ${v_1, …, v_n}\in V$ tale che per ogni $v_i \in V$ esistano degli scalari $a_1, …, a_n \in K$ tali che $v=a_1v_1+a_2v_2+...+a_nv_n=\sum_(i=1)^(n)a_iv_i$.
7) Lineare indipendenza di $n$ vettori -> Dati $\bar(x_1), ...,\bar(x_n) \in (V,+; o.)$ spazio vettoriale su campo $K$, si dice che due vettori sono linearmente indipendenti se non è possibile esprimere alcuno di essi come combinazione lineare dei rimanenti.
8) Base di uno spazio vettoriale -> Si dice che ${\bar(x_1), ...,\bar(x_n)}$ è una base per lo spazio vettoriale $(V,+;o.)$ se valgono le seguenti due proprietà:
- ${v_1, ...,v_n}$ è un sistema di generatori di $V$;
- $\bar(x_1), ..., \bar(x_n)$ sono linearmente indipendenti.
9) Sottospazio vettoriale -> Dato $(V,+;o.)$ uno spazio vettoriale su campo $K$, si dice che $S \in V$ è un sottospazio vettoriale per $V$ se è stabile rispetto alla somma di $V$ e al prodotto scalare per vettori di $Kxx V$. Ovvero a dire se $\forall \alpha,\beta \in K, \forall \bar(y), \bar(z)\in SrArr \alpha \bar(y) +\beta \bar(z) \in S$.
10) Immagine -> Data un'applicazione $f:mathbb(RR)^n->mathbb(RR)^m$, si definisce immagine il sottoinsieme di $RR^m$ del tipo $Im[f]={\bar(y) \in mathbb(RR)^m :\exists \bar(x) \in mathbb(RR)^n : \bar(y)=A(\bar(x))}$.
11) Nucleo -> Data la medesima applicazione, si definisce nucleo il sottoinsieme di $mathbb(RR)^n$ del tipo $Ker[f]={\bar(x) \in mathbb(RR)^n:f(\bar(x))=A(\bar(x))=\bar(0)_(mathbb(RR)^m)}$.
12) Funzione lineare tra spazi vettoriali -> Siano $V$ e $W$ due spazi vettoriali qualsiasi sul medesimo campo $K$, e sia $f:V->W$. Si dice che $f$ è una funzione lineare tra spazi vettoriali se $\forall \bar(x),\bar(y) \in V$ e $\forall \alpha, \beta \in K$ valgono contemporaneamente le seguenti due proprietà:
- $f(\bar(x)+\bar(y))=f(\bar(x))+f(\bar(y))$ (additività)
- $f(\alpha \bar(x))=\alpha f(\bar(x))$ (omogeneità)
oppure, in alternativa, la seguente unica proprietà:
- $f(\alpha \bar(x)+\beta \bar(y))=f(\alpha \bar(x))+f(\beta \bar(y))=\alpha f(\bar(x))+\beta f(\bar(y))$.
13) Sistema ortonormale -> Si dice che ${\bar (x_1), ..., \bar(x_n)}$ è un sistema ortonormale di vettori di $mathbb(RR)^n$ se è un sistema ortogonale e se $\sqrt(\bar(x_i))=1, \forall i \in mathbb(RR)$.
14) Norma -> Sia $V$ uno spazio vettoriale su campo $K$. Si definisce norma di $V$ una qualsiasi funzione $|| \cdot || :V-> mathbb(RR)$ che gode delle seguenti proprietà:
- $|| \bar(x) ||>=0$ per ogni $\bar(x)$ vettore di $V$ (positività)
- $|| \bar(x) ||=0$ se e solo se $bar(x)$ è il vettore nullo di $V$ (misura nulla)
- $|| \alpha \bar(x) ||= |\alpha|\cdot || \bar(x) ||, \forall \bar(x) \in V, \forall \alpha \in K \in mathbb(RR)$ (omogeneità)
- $|| \bar(x)+\bar(y) ||<=\bar(x) +\bar(y)$ (disuguaglianza triangolare).
15) Autovettore -> Se $\lambda$ è autovalore di $A$, allora $\exists \bar(x)\in mathbb(R)^n, \bar(x)!= \bar(0) : A\bar(x)=\lambda \bar(x)$, con $\bar(x)$ che si definisce autovettore di $A$.
16) Autospazio -> Se $\lambda$ è autovalore di $A$, allora $S(\lambda)={\bar(x) \in mathbb(RR)^n : (A-\lambda I_n)\bar(x)=\bar(0)}$ si definisce autospazio di $\lambda$.
17) Molteplicità algebrica -> Data una matrice quadrata di ordine $n$, si definisce molteplicità algebrica di $\lambda$ la molteplicità $\lambda$ quale radice del polinomio caratteristico associato ad $A$.
18) Molteplicità geometrica -> Si dice molteplicità geometrica la dimensione dell'autospazio di $\lambda$, cioè il numero di elementi di una sua qualsiasi base.
19) Si dimostra che autovettori associati ad autovalori distinti sono linearmente indipendenti. La dimostrazione avviene per assurdo assumendo che per $\lambda_1!=\lambda_2$ i relativi autovettori $\bar(u)$ e $\bar(v)$ non siano indipendenti. Ciò implica l'esistenza di uno scalare $\alpha !=0$ tale per cui $\bar(u)=\alpha \bar(v)$ (cioè combinazione lineare), da cui segue che $A\bar(u)=\lambda_1 \bar(u)=\lambda_1 (\alpha \bar(v))$. Quindi se $A\bar(u)=(\lambda_1 \alpha)\bar(v)=\alpha (\lambda_1 \bar(v))=$ significa che $\bar(v)$ è autovettore di entrambi gli autovalori, ovvero $A\bar(v)=(\alpha \lambda_1 \bar(v))=(\alpha \lambda_2 \bar(v))$, da cui $(\alpha \lambda_1 -\alpha\lambda_2)\bar(v)=0$ implicherebbe che i due autovalori sono uguali, contraddicendo l'ipotesi.

PARTE FUNZIONI LINEARI

Seguono le definizioni e le osservazioni:
1) Continuità -> Sia $f:X \in mathbb(RR)^n->mathbb(RR)$ una funzione reale in $n$ variabili. Sia $\bar(x_0)\in X$. Si dice che $f$ è continua in $\bar(x_0)$ se si verifica uno dei seguenti due casi:
- $\bar(x_0)$ è un punto di accumulazione per $X$ ed $\exists lim_(\bar(x)->\bar(x_0)) f(\bar(x))=f(\bar(x_0))$.
- $\bar(x_0)$ è un punto isolato per $X$.
2) Punto di accumulazione -> Si definisce punto di accumulazione di un insieme a valori reali se, comunque scelto un punto $x$ interno a tale insieme, esiste almeno un intorno del punto per un $\epsilon>0$ tale per cui si può trovare un punto $y1=x$ che appartiene comunque all'insieme reale.
3) Punto isolato -> Si definisce punto isolato di un insieme a valori reali se, comunque scelto un punto $x$ interno a tale insieme, esiste almeno un intorno del punto per un $\epsilon>0$ tale per cui non si rileva alcun punto appartenente all'insieme reale ad eccezione di $x$.
4) Derivabilità -> Sia $f:X\in mathbb(RR)^n->mathbb(RR)$ una funzione reale in $n$ variabili. Sia $\bar(x_0) \in X$. Si dice che $f$ è derivabile in $\bar(x_0)$ se $\forall i\in {1, ..., n}, \exists f_(x_i)(\bar(x_0))=(\partial)/(\partial x_i)f(\bar(x_0))=lim_(h->0) (f(\bar(x_0)+h\bar(e_i))-f(\bar(x_0)))/(h) \in mathbb(RR)$.
5) Differenziabilità -> Sia $f:X\in mathbb(RR)^n->mathbb(RR)$ una funzione reale in $n$ variabili. Sia $\bar(x_0) \in X$. Si dice che $f$ è differenziabile in $\bar(x_0)$ se $\exists \bar(a) \in mathbb(RR)^n : \exists lim_(\bar(h)->\bar(0)) (|f(\bar(x_0)+\bar(h))-f(\bar(x_0))-\grad f(\bar(x_0)) \cdot \bar(h)|)/(|| h ||)=0$.
6) Limite finito -> Sia $f:X\in mathbb(RR)^n->mathbb(RR)$ una funzione reale in $n$ variabili. Sia $\bar(x_0)\in mathbb(RR)^n$, con $\bar(x_0)$ punto di accumulazione per $X$. Allora, dato $l\in mathbb(RR)$ qualsiasi, si dice che $lim_(\bar(x)->\bar(x_0))f(\bar(x))=l$ se $\forall \epsilon >0, \exists \delta>0$ tale che $\bar(x)\in X, || \bar(x)-\bar(x_0) ||< \delta-> |f(\bar(x)-l)|<\epsilon$.
7) Teorema del differenziale totale -> Sia $f:X \in mathbb(RR)^n-> mathbb(RR)$ e $\bar(x_0) \in X$. Se $f$ è differenziabile in $\bar(x_0)$, allora valgono le seguenti proprietà:
- $f$ è continua in $\bar(x_0)$;
- $f$ è derivabile in $x_0$ (cioè ammette derivate parziali prime);
- $\forall \bar(e) \in mathbb(RR)^n$ versore, $\exists D_(\bar(e))f(\bar(x_0))=\bar(e) \cdot \grad f(\bar(x_0))$, con $D$ derivata direzionale;
- $\exists$ il piano tangente al grafico di $f$ nel punto $\bar(x_0)$ con equazione $z=f(\bar(x_0))+\grad f(\bar(x_0))\cdot (\bar(x)-\bar(x_0))$
8) Condizione sufficiente per la differenziabilità -> Sia $f:X \in mathbb(RR)^n-> mathbb(RR)$ e $\bar(x_0) \in X$. Allora, se esiste un intorno del punto per un $\epsilon>0$ tale per cui le derivate parziali prime della funzione sono continue in tale intorno, allora $f$ è differenziabile nel punto.
9) Moltiplicatori di Lagrange -> Si consideri una funzione in due variabili $f(x,y)$, e si supponga che tali variabili non siano tra loro indipendenti bensì legate da una relazione del tipo $\psi(x,y)=0$, detta vincolo. I punti che la funzione assume in grado di soddisfare il vincolo sono detti massimi e minimi vincolati. Le ipotesi di Lagrange sono che $f$ e $\psi$ siano funzioni differenziabili, che $P_0(x_0,y_0)$ sia un punto che soddisfa il vincolo, e che il vincolo sia qualificato (vale a dire che il gradiente del vincolo calcolato nel punto sia non nullo: questo assicura l'esistenza di un intorno del punto in cui il vincolo definisce una funzione $y=y(x)$ che finisce per trasformare la funzione in una funzione in un'unica variabile. Dunque siccome $f(x,y)$ è ora $f(x,y(x))$, per la derivata delle funzioni composte si ha $(df)/(dx)=f_x+f_y (dy/dx)$. Inoltre, siccome la derivata della funzione interna rappresenta in realtà la derivata del vincolo, dovendo cercare massimi e minimi nella sezione della funzione definita dal vincolo si ottiene $(df)/(dx)=f_x-f_y (\psi_y/\psi_x)$, con il segno meno ad indicare proprio la sezione ridotta della funzione. Questa equazione afferma che $f_x$ è proporzionale a $\psi_x$ e $f_y$ a $\psi_y$, per cui si può pensare di esprimere le derivate parziali come combinazioni lineari delle derivate parziali del vincolo. Vale a dire $f_x=-\lambda \psi_x$ ed $f_y=-\lambda \psi_y$, con $\lambda$ costante. Questo $\lambda$ è il moltiplicatore di Lagrange.
10) Massimo e Minimo -> Sono punti estremanti per la funzione, cioè punti in cui la funzione ha un estremo (sia esso un massimo o un minimo). Formalmente, si dice che $x_0$ è un massimo locale per $f$ se esiste un intorno $U$ di $x_0$ tale che $f(x)

vict85
La differenza tra campo e anello (commutativo unitario) è che ogni elemento del campo non nullo possiede un inverso moltiplicativo. Per capirci, in un anello qualsiasi \(ax = q\) potrebbe non avere soluzioni o averne più di una. Le matrici formano, per esempio, un anello ma non un campo. Così come \(\mathbb{Z}\) è un anello ma non un campo.

mobley
"vict85":
La differenza tra campo e anello (commutativo unitario) è che ogni elemento del campo non nullo possiede un inverso moltiplicativo. Per capirci, in un anello qualsiasi \(ax = q\) potrebbe non avere soluzioni o averne più di una. Le matrici formano, per esempio, un anello ma non un campo. Così come \(\mathbb{Z}\) è un anello ma non un campo.


Grazie vict per la risposta! :wink: Quindi la definizione che ho dato di anello è corretta? Se così fosse, è sufficiente aggiungere alle proprietà dell'anello la presenza dell'inverso moltiplicativo per definire un campo?

Ci sono altri errori in quello che ho scritto?

vict85
Nella tua definizione, un anello è sia unitario che commutativo. Non tutti usano quella definizione, ma suppongo che il tuo manuale potrebbe averlo fatto. Ma puoi guardare queste cose su wikipedia https://it.wikipedia.org/wiki/Anello_(algebra)

mobley
"vict85":
Nella tua definizione, un anello è sia unitario che commutativo. Non tutti usano quella definizione, ma suppongo che il tuo manuale potrebbe averlo fatto. Ma puoi guardare queste cose su wikipedia https://it.wikipedia.org/wiki/Anello_(algebra)


Domanda stupida: per inverso moltiplicativo intendi l'elemento inverso che moltiplicato per l'elemento di partenza restituisce l'elemento neutro?



Aggiungo: ci sono altre cose che ritenete dovrei aggiungere? Per quanto riguarda la parte sulle equazioni differenziali non mi sembra ci sia granché di teorico da sapere, a meno dei metodi risolutivi (wronskiano, metodo della somiglianza, variazione delle costanti…)

vict85
È difficile sapere quel che ti manca, perché per chi ha studiato matematica questi elementi sono fatti in 3-4 corsi diversi. Comunque ho letto velocemente. Un inverso moltiplicativo è esattamente quello che dici tu.

mobley
Grazie mille vict! Intanto inizio a studiarmi queste 4 cose… poi se chicchessia volesse consigliarmi altro da inserire (ad es. sulla parte delle equazioni differenziali, teoremi vari etc.), ogni consiglio o aiuto sono davvero ben accetti!

dissonance
Nella 6, la definizione di limite non è quella.
Nella 9, non hai detto che cos'è un massimo o un minimo.

Per il resto, vai bene, stai facendo un buon lavoro.

mobley
"dissonance":
Nella 6, la definizione di limite non è quella.
Nella 9, non hai detto che cos'è un massimo o un minimo.

Per il resto, vai bene, stai facendo un buon lavoro.


Grazie mille dissonance, il vostro aiuto si sta rivelando davvero prezioso!
Ok, ho ricontrollato quanto avevo scritto. Apparte il fatto che ho sbagliato a scrivere in Latex (e fin qui ci siamo)... La definizione di limite che ho io sugli appunti è la seguente:
Sia $f:X\in mathbb(RR)^n->mathbb(RR)$ una funzione reale in $n$ variabili. Sia $\bar(x_0)\in mathbb(RR)^n$, con $\bar(x_0)$ punto di accumulazione per $X$. Allora, dato $l\in mathbb(RR)$ qualsiasi, si dice che $lim_(\bar(x)->\bar(x_0))f(\bar(x))=l$ se $\forall \epsilon >0, \exists \delta>0$ tale che $\bar(x)\in X, || \bar(x)-\bar(x_0) ||\delta-> |f(\bar(x)-l)|<\epsilon$. Avevo omesso i formalismi matematici ma evidentemente sono necessari. Potresti farmi capire cosa si sta cercando di dire?

Per quanto riguarda il discorso massimi e minimi… Avrei dovuto dire che si tratta di punti estremanti? Se non dico cavolate, mi sembra di ricordare che sono quei punti che rendono l'hessiano definito positivo…

dissonance
Il limite va bene, a parte che ti sei mangiato qualche segno di minore.

Devi dire la definizione di "punto estremante". Che cos'è? Perché cerchi i punti estremanti? Lascia stare i tecnicismi, hessiani definiti positivi, mostri vari.

mobley
"dissonance":
Il limite va bene, a parte che ti sei mangiato qualche segno di minore.

Dove li ho persi? O meglio, dove li ha persi il docente dato che non ho fatto altro che ricopiare la definizione che ci è stata fornita. Inoltre ti chiedevo il senso di quei formalismi… Da quel che ricordo io, il significato "base" di limite è questo: una funzione in più variabili tende ad un reale positivo per $(x,y)->(x_0,y_0)$ se scegliendo un $\epsilon>0$ relativamente piccolo il differenziale tra la funzione calcolata nel punto e il reale è minore di $\epsilon$. Quello che non capisco è ad es. il senso di quel prodotto tra il differenziale normato e quel $\delta$ (che peraltro non capisco cosa rappresenti… Forse il valore assunto dalla funzione nell'intorno del punto?).

"dissonance":
Devi dire la definizione di "punto estremante". Che cos'è?

Beh, un punto estremante è un punto in cui la funzione ha un estremo (sia esso un minimo o un massimo).
"dissonance":
Perché cerchi i punti estremanti?

Credo banalmente per capire come è fatta la funzione e quindi per determinare quale tra i punti stazionari trovati sia effettivamente un minimo o un massimo (sempre che ve ne siano)

dissonance
Ti sei solo mangiato i segni di minore nel digitare, \(\|x-x_0\|<\delta\), solo quello, tranquillo.

Quanto al punto estremante, ok. Scrivilo in formule, è meglio. Il punto \(x_0\) è un massimo locale per la funzione \(f\) se esiste un intorno \(U\) di \(x_0\) tale che \[f(x)\le f(x_0), \qquad \forall x\in U.\]

mobley
"dissonance":
Ti sei solo mangiato i segni di minore nel digitare, \(\|x-x_0\|<\delta\), solo quello, tranquillo.

Va bene. Comunque dico, che vuole intendere quella norma?

"dissonance":
Quanto al punto estremante, ok. Scrivilo in formule, è meglio. Il punto \(x_0\) è un massimo locale per la funzione \(f\) se esiste un intorno \(U\) di \(x_0\) tale che \[f(x)\le f(x_0), \qquad \forall x\in U.\]


Ti dico... In questo caso il docente, per la ricerca di punti di max/min, richiede la presenza di due condizioni:
1) necessaria -> Se $\bar(x_0)$ è un punto di max/min per $f$, allora la forma quadratica associata all'hessiano $Hf(\bar(x_0))$ è semidefinita positiva/semidefinita negativa se $\bar(x)^T Hf(\bar(x_0)) \bar(x)>=0$ / $\bar(x)^T Hf(\bar(x_0)) \bar(x)<=0$.
2) sufficiente -> Se $\bar(x_0)$ è un punto di max/min per $f$, allora (come hai detto tu) $\exists U(\bar(x_0))$ incluso nell'insieme $X$ tale che $\forall U->f(\bar(x))< f(\bar(x_0))$ / $f(\bar(x))> f(\bar(x_0))$.
Ritieni che possa bastare questa seconda condizione?


dissonance
La 2) è proprio la definizione di punto di max/min, ma scritta un po' malamente; che significa \(\forall U\)? Non andare nel pallone, fermati quando non ce la fai più, hai già fatto un sacco di cose.

mobley
"dissonance":
La 2) è proprio la definizione di punto di max/min, ma scritta un po' malamente; che significa \(\forall U\)? Non andare nel pallone, fermati quando non ce la fai più, hai già fatto un sacco di cose.


Ho ripreso solo la notazione che hai usato tu. In realtà il docente ha scritto (cito):
Condizione sufficiente: $\grad f(\bar(x_0))=0$, e la forma quadratica associata alla matrice hessiana $Hf(\bar(x_0))$ è definita positiva/definita negativa se $\bar(x)^T Hf(\bar(x_0)) \bar(x) >0$ / $\bar(x)^T Hf(\bar(x_0)) \bar(x) <0$. Ne segue che $\bar(x_0)$ è punto di minimo locale stretto se $\forall B(\bar(x_0)) sub X$ intorno del punto si ha $f(\bar(x))>f(\bar(x_0))$. Analogamente, massimo locale stretto se $\forall B(\bar(x_0)) sub X$ intorno del punto si ha $f(\bar(x))
Dico… Credi sia sufficiente dire che
"dissonance":
un punto \( x_0 \) è un massimo locale per la funzione \( f \) se esiste un intorno \( U \) di \( x_0 \) tale che \[ f(x)\le f(x_0), \qquad \forall x\in U. \]
? Tralasciando necessaria, sufficiente…

"dissonance":
Non andare nel pallone, fermati quando non ce la fai più, hai già fatto un sacco di cose.

Sto tirando avanti tra caffè e sigarette :-D

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.