Quale è la derivata di questa funzione con il modulo?

marthy_92
Salve a tutti, Mi è venuto un dubbio : quale è la derivata di questa funzione

$ f(x,y) = |y| ( 1-x^2-y^2) $ definita in tutti il piano a valori in $ R $

rispetto alla variabile $ y $ dato che vi è il modulo?

E' questa ? $ f ' y (x,y ) = - (x^2 + 3·y^2 - 1)·|y| $?
Oppure devo distinguere due casi a seconda del segno di $ y $?

Ho un pò le idee confuse. Ad esempio la derivata della funzione $ f(x) = |X| $ quale è ?
Consultando vecchi appunti ho trovato che essa è $ x / |x| $? E' giusto?
Potete aiutarmi a chiarire le idee?

Risposte
marthy_92
Ok ho capito :) Per quanto riguarda i passaggi, dopo ciò che mi hai detto ho fatto

$ f ' y (x,y ) = (|y| / y) (1-x^2-y^2) + |y| ( -2y) $
e poi ho continuato con il m.c.m fino ad ottenere la funzione che hai scritto tu .
Ma in tutto questo non si deve suppore y diverso da zero?

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.