Limite serie
Salve a tutti, potreste darmi qualche indicazione per risolvere questo esercizio?
Si calcoli, se esiste, il limite della serie 3 -4/2! -8/3! +16/4! +32/5! -64/6! -128/7! +... Risultato sen2 + cos2
Avevo cercato di determinare il termine generale, lasciando il 3 a parte e considerando separatamente n pari e dispari ma non ce l'ho fatta a venirne a capo. Grazie.
Si calcoli, se esiste, il limite della serie 3 -4/2! -8/3! +16/4! +32/5! -64/6! -128/7! +... Risultato sen2 + cos2
Avevo cercato di determinare il termine generale, lasciando il 3 a parte e considerando separatamente n pari e dispari ma non ce l'ho fatta a venirne a capo. Grazie.
Risposte
Lo si capisce dalle espansioni in serie di Taylor
$\sin x = x - x^3 / {3!} + x^5 / {5!} + ...$
$\cos x = 1 - x^2 / {2!} + x^4 / {4!} + ...$
$\sin x = x - x^3 / {3!} + x^5 / {5!} + ...$
$\cos x = 1 - x^2 / {2!} + x^4 / {4!} + ...$
Ho capito, non avevo pensato ad utilizzare gli sviluppi di Taylor. Grazie mille!