Limite notevole
Buongiorno! Dovevo risolvere questo limite utilizzando i limiti notevoli... allora...
$\lim_{x \to \0^+}((e^tanx - 1 + x^3)/(tanx + e^-(1/tanx)))$ $=$ $\lim_{x \to \0^+}((((e^tanx - 1)/(tanx))*tanx + x^3)/(tanx + ((e^-(1/tanx) - 1)/(-1/(tanx)))(-(1/tanx)) + 1))$ $=$ $\lim_{x \to \0^+}((((e^tanx - 1)/(tanx))*tanx + x^3)/(tanx + ((e^-(1/tanx) - 1)/(-1/(tanx)))(1/(senx))((-cosx + 1)/x^2)*x^2))$ $=$ $\lim_{x \to \0^+}((((e^tanx - 1)/(tanx))*x*(tanx/x + x^2))/(((e^-(1/tanx) - 1)/(-1/(tanx)))((-cosx + 1)/x^2) *x*(tanx/x + x/(senx))))$ $=$ $1$
...è svolto bene?
$\lim_{x \to \0^+}((e^tanx - 1 + x^3)/(tanx + e^-(1/tanx)))$ $=$ $\lim_{x \to \0^+}((((e^tanx - 1)/(tanx))*tanx + x^3)/(tanx + ((e^-(1/tanx) - 1)/(-1/(tanx)))(-(1/tanx)) + 1))$ $=$ $\lim_{x \to \0^+}((((e^tanx - 1)/(tanx))*tanx + x^3)/(tanx + ((e^-(1/tanx) - 1)/(-1/(tanx)))(1/(senx))((-cosx + 1)/x^2)*x^2))$ $=$ $\lim_{x \to \0^+}((((e^tanx - 1)/(tanx))*x*(tanx/x + x^2))/(((e^-(1/tanx) - 1)/(-1/(tanx)))((-cosx + 1)/x^2) *x*(tanx/x + x/(senx))))$ $=$ $1$
...è svolto bene?
Risposte
...c'è nessuno che mi può aiutare?
Qui ci dovrebbe essere un errore:
$lim_{x \to \0^+}((((e^tanx - 1)/(tanx))*tanx + x^3)/(tanx + ((e^-(1/tanx) - 1)/(-1/(tanx)))(1/(senx))((-cosx + 1)/x^2)*x^2))$
infatti:
$ (1/(senx))((-cosx+1)/x^2)*x^2 = -1/(tgx) +1/(senx) != -1/(tgx) + 1 $
che avevi al passaggio precedente
$lim_{x \to \0^+}((((e^tanx - 1)/(tanx))*tanx + x^3)/(tanx + ((e^-(1/tanx) - 1)/(-1/(tanx)))(1/(senx))((-cosx + 1)/x^2)*x^2))$
infatti:
$ (1/(senx))((-cosx+1)/x^2)*x^2 = -1/(tgx) +1/(senx) != -1/(tgx) + 1 $
che avevi al passaggio precedente

io avevo considerato $-(1/tanx) = - (cosx/(senx)) = (1/(senx))*(-cosx)$ perciò lo avevo sviluppato in quel modo...