Insieme limitato e punti a distanza minima
" $T={(x,y): 3x^2+2xy+3y^2-1=0} $
a) Provare che è chiuso è limitato.
b) Trovare i punti con distanza minima da (0,0)."
Non riesco a svolgere questo esercizio.
Che sia chiuso è evidente perché luogo di zeri, ma va bene dire che è limitato perché funzione continua in R^2?
Per il punto b), normalmente uso il metodo dei moltiplicatore di Lagrange. Non avendo alcuna funzione ristretta a T, come dovrei impostare la lagrangiana?
$ L(x,y,lambda )=lambda (3x^2+2xy+3y^2-1) $
a) Provare che è chiuso è limitato.
b) Trovare i punti con distanza minima da (0,0)."
Non riesco a svolgere questo esercizio.
Che sia chiuso è evidente perché luogo di zeri, ma va bene dire che è limitato perché funzione continua in R^2?
Per il punto b), normalmente uso il metodo dei moltiplicatore di Lagrange. Non avendo alcuna funzione ristretta a T, come dovrei impostare la lagrangiana?
$ L(x,y,lambda )=lambda (3x^2+2xy+3y^2-1) $
Risposte
T è una conica, vedi che tipo di conica è.
La funzione da minimizzare è la distanza da O, cioè $f(x,y)=\sqrt(x^2+y^2)$. Anche se ti consiglio di minimizzare $g(x,y)=x^2+y^2$, il che è lo stesso per le proprietà della radice.
La funzione da minimizzare è la distanza da O, cioè $f(x,y)=\sqrt(x^2+y^2)$. Anche se ti consiglio di minimizzare $g(x,y)=x^2+y^2$, il che è lo stesso per le proprietà della radice.
Ciao maxira,
Per la precisione è una conica semplicemente ruotata di centro l'origine degli assi, infatti c'è solo il termine misto $2xy $, ma non ci sono quelli in $x $ e in $y $. Per vedere di che tipo di conica si tratta puoi anche fare uso delle formule di rotazione:
$\{(x = sqrt{2}/2 X - sqrt{2}/2 Y),(y = sqrt{2}/2 X + sqrt{2}/2 Y):}$
"Reyzet":
T è una conica, vedi che tipo di conica è.
Per la precisione è una conica semplicemente ruotata di centro l'origine degli assi, infatti c'è solo il termine misto $2xy $, ma non ci sono quelli in $x $ e in $y $. Per vedere di che tipo di conica si tratta puoi anche fare uso delle formule di rotazione:
$\{(x = sqrt{2}/2 X - sqrt{2}/2 Y),(y = sqrt{2}/2 X + sqrt{2}/2 Y):}$
Posso direttamente dire che è un'ellisse e che quindi per definizione è limitata?
Beh no, dire non basta, lo devi dimostrare: ci sono diversi modi per sapere che tipo di conica rappresenta un'equazione del tipo $ax^2 + bxy + cy^2 + dx + ey + f = 0 $
Nel caso proposto $a = c = 3 $ (quindi l'angolo di rotazione è $\pi/4 $), $ b = 2 $, $d = e = 0 $ e $f = - 1 $.
Nel caso proposto $a = c = 3 $ (quindi l'angolo di rotazione è $\pi/4 $), $ b = 2 $, $d = e = 0 $ e $f = - 1 $.