Dubbio sui punti esterni

gscatto
Buongiorno,
in Analisi 2 il professore ha definito il punto esterno come segue:
Un punto $\vec{x} \in \mathbb{R}^n$ si dice esterno a $E \subset \mathbb{R}^n$ se è interno a \(\complement E\).

E qui mi ritrovo. Tuttavia aggiunge:
$\vec{x}$ è un punto esterno ad $E \subset \mathbb{R}^n$ se e solo se \(\vec{x}\in(\complement \dot{E})\), dove per \(\dot{E}\) si intende l'interno di $E$.

Questa non mi convince perché, se non mi sbaglio, il complementare dell'interno di un insieme può contenere la frontiera dello stesso, e quest'ultima non può far parte dell'esterno di un insieme.

Mi sbaglio?
Vi ringrazio anticipatamente per l'aiuto.

Risposte
Antimius
Esatto, il complementare dell'interno contiene anche la frontiera. Forse voleva dire l'interno del complementare.

gscatto
Perfetto, ora tutto torna! Grazie mille!

Antimius
No problem :-)

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.