Derivata logaritmo (funzione composta)
ciao, nella risoluzione di un integrale definito con il metodo per parti, mi sono imbattuto in questo caso:
derivata di $ln^2(5x)$ che è $2ln(5x)*1/(5x)*5$
ma se la riscrivo come: $2ln(5x)$ la derivata sarebbe: $2*1/(5x)*5$ e quindi molto più semplice da gestire.
invece che usare la derivata di $x^a$ ho usato la derivata di $a*x$
E' corretto ciò che ho fatto o è sbagliato?
grazie
derivata di $ln^2(5x)$ che è $2ln(5x)*1/(5x)*5$
ma se la riscrivo come: $2ln(5x)$ la derivata sarebbe: $2*1/(5x)*5$ e quindi molto più semplice da gestire.
invece che usare la derivata di $x^a$ ho usato la derivata di $a*x$
E' corretto ciò che ho fatto o è sbagliato?
grazie

Risposte
Spero in una svista: $[ln(5x)^2=2ln(5x)]$, non $[ln^2(5x)=2ln(5x)]$.
"speculor":
Spero in una svista: $[ln(5x)^2=2ln(5x)]$, non $[ln^2(5x)=2ln(5x)]$.
mi sono confuso, ho usato la seconda
