Aiuto su serie di funzioni

marcook1
Salve, ho bisogno di avere conferma sull'esattezza dello svolgimento di un esercizio ed eventualmente una correzione, lo proporrò qui di seguito con la soluzione secondo me.

Data la serie di funzioni $\sum_{n=1}^oo e^(-nx^2)cos(nx)$

1. Studiare la convergenza totale sugli intervalli $(-2\pi,+2\pi)$ e $(+2\pi,+oo)$
2.Cosa si può dire sulla convergenza uniforme su $(-2\pi,+2\pi)$?

1.

Intervallo $(-2\pi,+2\pi)$

la convergenza totale è data dalla convergenza di $\sum_{n=1}^oo Sup_(x in(-2\pi,+2\pi)) |e^(-nx^2)cos(nx)|=1$ Quindi converge totalmente su questo intervallo

Intervallo $(+2\pi,+oo)$

la convergenza totale è data dalla convergenza di $\sum_{n=1}^oo Sup_(x in(+2\pi,+oo)) |e^(-nx^2)cos(nx)|=\sum_{n=1}^oo |e^(-n4(pi)^2)cos(2n pi)|$ $=>$ $-e^(-n4(pi)^2)<=e^(-n4(pi)^2)cos(2n pi)<=e^(-n4(pi)^2)$ Quindi converge totalmente su questo intervallo

2.Sull'intervallo dato la serie converge totalmente e quindi anche uniformemente.


Grazie a chiunque mi aiuterà :-D

Risposte
marcook1
No analisi III...analisi 1 il programma consueto
analisi 2 funzioni di più variabili, derivate parziali e integrali doppi e tripli
analisi 3 serie, successioni di funzioni, integrali curviliniei, superficiali e la geometria differenziale

Faccio Ing. civile....troppo analisi per uno che ha scelto di fare ingegneria :-D

gugo82
Lascia stare, che forse sono gli esami più utili che farai... Almeno ti insegnano a studiare.


P.S.: Faccio notare che gli elettronici e gli informatici hanno esami di Matematica più tosti da affrontare.

marcook1
ne ho altri che per quello che devo fare sono molto più utili...anche perchè mi bastava farne 2 il terzo per la mia facoltà è completamente inutile per lo meno in parte....

dissonance
Si, vabbé. Serie di funzioni, integrali curvilinei, ... inutili per l'Ingegneria? Mi permetta di farmi una simpatica risata. :-)

Camillo
E' piuttosto improbabile che nella vita professionale un ingegnere civile debba ancora occuparsi di serie di funzioni ; possibile nel caso di Ingegnere Elettrronico o delle Telecomunicazioni .
Comunque l'esame di Analisi III va superato, serie di funzioni incluse :D In bocca al lupo per marcook.

marcook1
Non mi saranno utili per il livello che viene proposto nel corso...infatti hanno riformato il mio corso di studi, analisi III è sparita infatti integrali curvilinei e superficiali sono affrontati in geometria e algebra mentre tutte le altre cose (a parte la geometria differenziale) nel corso di analisi II.

Così è molto più utile, viene abbassato il livello di queste nozioni a quello stretto necessario che ci serve e gli altri crediti sono investiti in cose più utili che servono di più all'ingegnere, ad esempio fisica.....però è impossibile non riconoscere l'importanza della matematica!!

Grazie per l'imbocca al lupo, e crepi il lupo!! :-D

gugo82
[OT, anche se sò che è una battaglia persa...]

"marcook":
Non mi saranno utili per il livello che viene proposto nel corso...infatti hanno riformato il mio corso di studi, analisi III è sparita infatti integrali curvilinei e superficiali sono affrontati in geometria e algebra mentre tutte le altre cose (a parte la geometria differenziale) nel corso di analisi II.

Ah, gli integrali affrontati nei corsi di Geometria e Algebra (che poi sarebbe Algebra Lineare, no?)... Che fortuna! :?

"marcook":
Così è molto più utile, viene abbassato il livello di queste nozioni a quello stretto necessario che ci serve

Già, perchè ormai all'Università si va per avere lo "stretto necessario", ossia la formazione tecnica che prima si dava (appunto) negli Istituti Tecnici, mica quella teorica che dovrebbe esser propria di un'istituzione che cura la diffusione di conoscenze superiori...

"marcook":
gli altri crediti sono investiti in cose più utili che servono di più all'ingegnere, ad esempio fisica...

Se non si sà cos'è un integrale curvilineo o di superficie come si pretende di studiare Fisica? Mah...

Ragazzi, vi stanno truffando del vostro sapere; quando comincerete a rendervene conto?
Quando andrete a lavorare in fabbrica e vi daranno uno stipendio da fame, perchè ormai la vostra laurea è un certificato assolutamente inutile?

[/OT]

Ad ogni modo, in bocca al lupo.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.