Principio di induzione
ciao ragazzi ho bisogno di un vostro aiuto con questo principio di induzione che ho sempre odiato.. ma ora devo dare l'esame quindi devo farmelo piacere
siano k ε N0 e U= {n ε N0 | k<=n}.
sia poi X un sottoinsieme di U tale che
1) k ε X
2)ogni volta che X contiene n contiene anche n+1
allora X=U
ora la dimostrazione mi dice
supponiamo che X
e quindi esiste il minimo di y che chiameremo m.
ora il libro mi dice che m=/k perchè m-1 appartiene ad U e per la minimalità di m si ha m-1 ε X
questa parte proprio non l ho capita qualche anima buona puo spiegarmela meglio????

siano k ε N0 e U= {n ε N0 | k<=n}.
sia poi X un sottoinsieme di U tale che
1) k ε X
2)ogni volta che X contiene n contiene anche n+1
allora X=U
ora la dimostrazione mi dice
supponiamo che X

e quindi esiste il minimo di y che chiameremo m.
ora il libro mi dice che m=/k perchè m-1 appartiene ad U e per la minimalità di m si ha m-1 ε X
questa parte proprio non l ho capita qualche anima buona puo spiegarmela meglio????


Risposte
Se $m$ e' il minimo di $Y$ vuol dire che $m-1$ non sta in $Y$, quindi sta in $X$; ma per ipotesi $(m-1)+1=m$ sta in $X$ che e' assurdo.
m-1 sta sia in x che in u giusto?? perchè entrambi hanno k come elemento che risulta essere <= m-1
ho capito bene?
ho capito bene?
Si'
conosci anche la dimostrazione per la seconda forma del principio di induzione??????
Non conosco la seconda forma, io conosco un solo principio di induzione.