Quesito sul taxi... un aiuto?

stexxon
Marco, Matteo, Gioia e Sara hanno trovato un taxi.
Il viaggio inizia e arrivano in vista di un ponte a forma di arco di circonferenza, esattamente 1/4 di circonferenza di raggio R = 100m.
Gioia dice: "Con la velocita che abbiamo ora, anche a motore spento dovremmo avere sufficiente spinta per salire alla sommità del ponte e quindi scendere dall'altra parte".
Marco: "Certo! E in assenza di attrito, la velocità potrebbe essere assai minore".
Sara: "Quanto minore?" "Non dovrebbe essere difficile calcolarla considerando la conservazione dell'energia" replica Marco che in breve tempo fornisce la risposta.
Matteo, dopo aver esaminato il calcolo di Marco, dice :
"Io pero adesso vorrei sapere: quanto tempo ci vuole, con questa velocità, ad arrivare in cima al ponte?".
Qual e la risposta al quesito di Matteo?



Voi cosa rispondereste? :shock:

Risposte
blackburn98
Bene...
prima di imboccare il ponte il taxi avra un'energia cinetica pari a quando sara in cima al ponte quindi:
$ U=K rArr mgh=1/2mv^2 rArr gh=1/2v^2 $
Sapendo la lunghezza del raggio possiamo calcolarci l'energia potenziale
$ gh=9,8*100=980 $
Sfruttando il principio di conservazione dell'energia ci possiamo calcolare la velocita
$ 1/2v ^2=980 $
$ v=sqrt(2*980) =44,27m/s$
Considerando che il percorso compiuto dal taxi e 1/4 di arco di circonferenza che verosimilmente possiamo assimilare a un arco di parabola,possiamo dire che:
Il tempo impiegato dal taxi a percorrere l'arco di circonferenza è lo stesso di quando il taxi percorrera il raggio in modo verticale.
$ t=v/g $
$ t=(44,27)/(9,8) rArr 4,5s $

Credo che questa sia la risposta :D

stexxon
Grandissimo! Grazie! :D

milizia96
Sbaglio o l'altezza del ponte dovrebbe essere $100(1-\sqrt(2)/2)$ ?
Mi sembra che blackburn abbia considerato un ponte a forma di 1/2 circonferenza, invece di 1/4

stexxon
blackburn98, che dici a riguardo della segnalazione di milizia96 ?

Visto che devo dare un riscontro entro oggi... grazie! :smt023

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.