Ripetizioni di matematicA\3

indovina
determinare il centro del fascio
[math]x+my-4(m+1)=0[/math]
per quali valori di
[math]m[/math]
la retta del fascio determina con gli assi cartesiani un triangolo di area di misura
[math]4[/math]

Risposte
xico87
scusa, cos'è un triangolo? perchè faccio confusione col quadrato e il rettangolo... :lol:lol:lol

cmq adesso ho da fare... se supergaara, o ciampax, o Pillaus o qualcun altro nn lo guarda lo provo a vedere stasera

...certo che è un po' anomalo che tu ti metta a fare già esercizi di matematica... la squola è appena finita :lol

paraskeuazo
Credo di aver capito che indovina lo fà per esercitarsi e x ripetere, cmq nn so proprio cm aiutarti, lo sai che mate nn è per niente il mio forte :lol

Pillaus
il centro lo trovi, ad esempio, scrivendo il fascio raccogliendo il parametro

[math]x - 4 + m(y - 4) = 0[/math]


Le rette base sono x - 4 = 0 e y - 4 = 0, la cui intersezione è ovviamente (4;4)

La retta generica del fascio interseca l'asse x in
[math]x = 4m + 4[/math]
e l'asse y in
[math]y = \frac{4 + 4m}{m}[/math]
. Ora, base e altezza sono ascissa e ordinata in modulo delle intersezioni, quindi l'area è:
[math]A =\frac{1}{2} \left|4m +4\right|\cdot \left|\frac{4 + 4m}{m}\right| = 4\\
\left|\frac{\left(4m+4\right)^2}{m}\right| = 8\\
2\left(m+1\right)^2 = \left|m\right|\\
2m^2 + 4m \pm m + 2 = 0[/math]


Si hanno due equazioni, la prima ha per soluzioni
[math]m_{1,2} =-2,-\frac{1}{2}[/math]

l'altra non ha soluzioni.

Le rette sono dunque
[math]y = 2x - 4[/math]
e
[math]y = \frac{1}{2}x + 2[/math]

indovina
ecco vabbè il centro l'avevo trovato....scusa se nn te l'ho detto....il resto mi è parso un pò ostico.Rispondo per gli altri...mi va di ripetere mate...sto facendo un paio di esercizi al giorno...nel momento in cui qualcuno non mi viene o ho dei dubbi mando a voi...se nn vi è di problema.cmq di nuovo grazie atutti per laiuto!!!

SuperGaara
Certo che no, indovina...assolutamente non c'è nessun problema: posta pure tutti gli esercizi che vuoi e proveremo a risolverteli!

pukketta
non ti preoccup ema!

xico87
scusa Emanuela, non intendevo assolutamente dire che è un problema aiutarti, ma semplicemente (e parlo per esperienza :lol) che io non mi sarei mai messo sui libri appena finita la scuola. se hai problemi posta pure... e scusami ancora

SuperGaara
Io non ti scuserei...:no

xico87
:O_o :cry:cry:cry

...ma tanto Emanuela è più buona di te :box

SuperGaara
Alè...:anal

xico87
quello giallo sono io... :lol

indovina
dai raga basta ehehhe

IPPLALA
Vabbè, stanno scherzando.....

indovina
sisi llo so ........se nn si scherza un pò è una pizza davvero!!!

pukketta
- chiudo -

Questa discussione è stata chiusa