Proporzionalità diretta

ROBROB1
Non riesco a risolvere questo problema:

In un autolavaggio 4 addetti lavano 20 auto in 100 minuti.

a. quanto tempo impiegherebbero 6 addetti a lavare lo stesso numero di auto?

b. quanti addetti servono per lavare 60 auto in 50 minuti?

I risultati forniti dal libro sono circa 67 minuti (per la a) e 24 addetti (per la b), ma non riesco ad ottenerli.

Fatemi sapere o datemi qualche indizio, grazie mille!

Risposte
@melia
a) Quattro addetti necessitano di 100 minuti, quindi un solo addetto laverebbe 20 auto in 400 minuti, se gli addetti sono 6 basta fare $400:6=67$

b) Per lavare 20 auto in 50 minuti basta raddoppiare il numero di addetti, quindi ne servono 8. Se triplico il numero delle auto e mantengo fisso il tempo devo anche triplicare il numero di addetti: $8*3=24$

gugo82
Sempre ammesso che gli addetti lavorino in tempi uguali, altrimenti le cose non funzionano.
Quest'ipotesi è implicita, ma andrebbe esplicitata nel testo... :roll:

Sara00010
Io avrei da risolvere questo problema, che mi sta facendo impazzire:
Una tenda da sole ha lo spessore di 0,6 mm; quand’è arrotolata su un
rullo da 64 mm di diametro, forma un cilindro da 82 mm di diametro.
Quant’è lunga quando viene srotolata? Se è larga 6 m, qual è la sua
superficie?

La tenda si gira sopra il rullo, e andrebbe risolto con le proporzioni! Mi potreste dare una mano perfavore??

@melia
Non capisco come possa essere risolto con le proporzioni. Lo risolverei così

1. trovo la superficie occupata dalla tenda che non è altro che la corona circolare, facendo l'area del cerchio grande meno quella del cerchio piccolo: $pi R^2-pir^2=pi(82/2)^2-pi(64/2)^2=pi(41^2-32^2)=657pi~~2064\ \ mm^2$

2. divido per lo spessore della tenda e così trovo la sua lunghezza $2064/0.6=3440 \ \mm=3,44 \ \m$

3. per la superficie non c'è problema, si tratta di un rettangolo, $6*3,44=20,64 \ \m^2$

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.