Mi serve una mano per matematica
Mi potreste risolvere questi problemi?
Un triangolo rettangolo ha i cateti che misurano 5a e 2a + 1 Se si aumenta il primo di 3a+ underline 2 e si diminuisce il secondo di a, qual è la differenza tra la seconda e la prima area?
La soluzione è:-a²+5/2a+1
L'altro problema è nel file allegato
Aggiunto 43 secondi più tardi:
Il secondo problema è il 439 e il primo il 438
Un triangolo rettangolo ha i cateti che misurano 5a e 2a + 1 Se si aumenta il primo di 3a+ underline 2 e si diminuisce il secondo di a, qual è la differenza tra la seconda e la prima area?
La soluzione è:-a²+5/2a+1
L'altro problema è nel file allegato
Aggiunto 43 secondi più tardi:
Il secondo problema è il 439 e il primo il 438
Risposte
PROBLEMA 438
Cateto minore = 5a
Cateto maggiore = 2a + 1
Calcolo l'Area
5a . (2a + 1)/2 =(10a2 + 5a)= . 1/2 = 5/2a (2a + 1)
Ora modifico la lunghezza delle due dimensioni
Cateto minore = 5a + (3a + 2) = 5a + 3a + 2 = 8a + 2
Cateto maggiore = (2a + 1) - a ) 2a + 1 -a = a +1
Ora calcolo l'Area con le nuove dimensioni
(8a + 2) . (a + 1)/2 = (8a2 + 2a + 8a + 2)/2 = (8a2 + 10a + 2)/2 =
= 4a2 + 5a + 1
Ora calcolo la differenza fra le due Aree
4a2 + 5a + 1 - 5/2a (2a + 1) = 4a2 + 5a + 1 - 5a2 - 5/2a = -a2 + 5a - 5/2a + 1 = -a2 + 5/2a + 1
Aggiunto 1 ora 18 minuti più tardi:
PROBLEMA 439
La figura e' composta da un quadrato, da un rettangolo e da un triangolo con la base coincidente con quella rettangolo
Cancolo, per differenza, la base del rettangolo
1 + 3a - 2a = 1 + a
Calcolo, per differenza, l'altezza del rettangolo
3a + 1 - 2a = a + 1
Calcolo l'area del rettangono
2a (1 + a) = 2a + 2a2
Calcolo l'area del triangolo
(1 + a) al quadrato n: 2 = (1 + 2a + a2) : 2 = 2a + 2a2 + 1/2 + a + 1/2a2 = 5/2a2 + 3a + 1/2
Cateto minore = 5a
Cateto maggiore = 2a + 1
Calcolo l'Area
5a . (2a + 1)/2 =(10a2 + 5a)= . 1/2 = 5/2a (2a + 1)
Ora modifico la lunghezza delle due dimensioni
Cateto minore = 5a + (3a + 2) = 5a + 3a + 2 = 8a + 2
Cateto maggiore = (2a + 1) - a ) 2a + 1 -a = a +1
Ora calcolo l'Area con le nuove dimensioni
(8a + 2) . (a + 1)/2 = (8a2 + 2a + 8a + 2)/2 = (8a2 + 10a + 2)/2 =
= 4a2 + 5a + 1
Ora calcolo la differenza fra le due Aree
4a2 + 5a + 1 - 5/2a (2a + 1) = 4a2 + 5a + 1 - 5a2 - 5/2a = -a2 + 5a - 5/2a + 1 = -a2 + 5/2a + 1
Aggiunto 1 ora 18 minuti più tardi:
PROBLEMA 439
La figura e' composta da un quadrato, da un rettangolo e da un triangolo con la base coincidente con quella rettangolo
Cancolo, per differenza, la base del rettangolo
1 + 3a - 2a = 1 + a
Calcolo, per differenza, l'altezza del rettangolo
3a + 1 - 2a = a + 1
Calcolo l'area del rettangono
2a (1 + a) = 2a + 2a2
Calcolo l'area del triangolo
(1 + a) al quadrato n: 2 = (1 + 2a + a2) : 2 = 2a + 2a2 + 1/2 + a + 1/2a2 = 5/2a2 + 3a + 1/2