FISICA

omar2080
Un protone ha l'energia cinetica di 50 eV e si muove descrivendo un'orbita circolare in un campo magnetico d'induzione 0,1 T. Determinare il raggio dell'orbita e la frequenza del moto. (Massa del protone: 1,67*10alla meno 27 kg; carica del protone 1,6*10alla meno 19 C).

RISULTATO: 10,2 m; 1,5*10alla sesta Hz.


Una particella alfa di energia 3,32*10alla 5 eV in un campo magnetico d'induzione 1 T subisce l'azione di una forza d'intensita' 6,4*10alla meno 13 N. Calcolare l'angolo tra la velocita' e il campo magnetico. (Massa della particella alfa: 6,62*10alla meno 27 kg; carica della particella alfa: 6,62*10meno 19 C

RISULTATO: 30 gradi.

Risposte
Sk_Anonymous
Se E e' l'energia cinetica ,allora :
1/2*m*v^2= E---> v=sqrt(2E/m)
Pe le solite formule si ha:
mv^2/r=eBv--->r=mv/eB, oppure:
r=(m)*sqrt(2E/m)/eB,cioe'
r=sqrt(2mE)/eB.Sostituendo i valori risulta:
r=10^(-2)m (mi trovo cosi' e non 10,2m)
f=v/(2*pi*r)=1/(2*pi)*(eB/m)=1.5*10^6Hz.
Tieni presente che:
pi=p-greca e 1ev(elettron-volt)=1.6*10^(-19)joule.
L'altro te lo posto piu' tardi(se nessuno risponde).Ora devo uscire.
Saluti da karl.



Modificato da - karl il 21/01/2004 21:20:51

vecchio1
anche a me come Karl non torna il risultato...io ho fatto i conti con Google..non avendo a portata di mano una calcolatrice...

e mi viene:

sqrt((50 eV) * 1,67 * ((10^-27) * Kg) * 2) / (1,6 * ((10^-19) * C) * (0,1 T)) = 1,02233546 centimeters

per la frequenza ho usato la formula f=eB/2pi*m e mi viene come Karl...

il vecchio

vecchio1
per il secondo problema nn capisco cosa sia quell'energia la cui unità di misura è eV...che tipo di energia è??
forse sono io che ignoro questo tipo di energia...ma ti prego in tal caso di farmi chiarezza.

ciao

il vecchio

Sk_Anonymous
Per Vecchio.
La eV (detta anche elettron-volt) e' l'energia che
acquista un elettrone quando viene accelerato dalla d.d.p
di un Volt.Ora tale energia e',com'e' noto,data da :
E=carica*(differenza di potenziale);nel nostro caso
carica=carica elettrone=1.6*10^(-19)C
differenza di potenziale=1V
dunque:
eV=1.6*10^(-19)C*1V=1.6*10^(-19)joule.
karl.



Modificato da - karl il 22/01/2004 14:39:52

vecchio1
ahhh, quindi per gli amici sarebbe il lavoro!!!!

mmm allora la chiave di tutto è calcolare la velocità...è corretto secondo te ugugliare L a 1/2mv?
altrimenti come la trovi la velocità?

una volta trovata la velocità io applicherei la formula

f=qvBsin (è così no?)

attendo tue notizie

il vecchio

Sk_Anonymous
Per vecchio.
Lavoro ed energia sono praticamente sinonimi.
Una (sottile) differenza e' che l'energia di un
sistema e' "l'attitudine" del sistema a fare un lavoro, ma
poi nella pratica vengono misurati entrambi in joule.
Ritornando al problema ,il tuo procedimento e' esatto:
le due equazioni da utilizzare sono proprio quelle.
E=1/2*mv^2
evBsin(alfa)=F.
Dalla prima mi ricavo v=sqrt(2E/m) e la sostituisco
nella seconda per avere,dopo qualche calcolo,sin(alfa):
sin(alfa)=F/(eB)*sqrt(m/2E).
Anche in questo problema c'e' qualche dubbio nel calcolo numerico
perche ' la carica di una particella ALFA non e',a quanto mi
risulta,6.62*10^(-19) ma esattamente la meta':infatti ALFA e'
un atomo di elio che ha perduto DUE elettroni e dunque
e' uno ione con carica positiva pari al doppio di quella di
un protone cioe' 2*(1.6*10^(-19))=3.2*10^(-19).
Solo con questo valore corretto si ha alfa=30°.
Salvo errori.
Saluti da karl.

vecchio1
evviva!!! ecco perchè non mi veniva!!!
mi erano venuti quei dubbi perchè non mi tornava il risultato...non avrei mai pensato che fosse sbagliata la massa della particella alfa...a proposito ma non sono le stesse particelle che ha usato Rutherford nei sui esperimenti per spiegare i famosi "vuoti di Rutherford"?? magari ho detto un stupidaggine, ma mi pare di ricordare questo dalla chimica dell'anno scorso...bo..

va bè tutto è bene quel che finisce bene!!

ciao

il vecchio

Sk_Anonymous
Sono proprio le stesse particelle.
Scusami Vecchio,io parlavo di correggere
la carica e non la massa.Hai trovato
forse una diversa correzione?
karl.

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.