1)cos x - sen x=radical 2 2)sen x + cos x - radical 2=0

greenday92erika
aiuto equazioni lineari chi mi aiuta?

Risposte
BIT5
la prima:

dividi tutto per radice 2:

[math] \frac{1}{\sqrt2} \cos x - \frac{1}{ \sqrt2} \sin x = 1 [/math]


razionalizza:

[math] \frac{ \sqrt2}{2} \cos x - \frac{ \sqrt2}{2} \sin x = 1 [/math]


Ricordando che
[math] \frac{ \sqrt2}{2} = \sin \frac{3}{4} \pi [/math]
e che
[math] - \frac{ \sqrt2}{2} = \cos \frac34 \pi [/math]
potrai scrivere

[math] \sin \frac34 \pi \cos x + \cos \frac34 \pi \sin x = 1 [/math]


E quindi, ricordando le formule di addizione

[math] \sin ( \frac34 \pi + x )=1 [/math]


ovvero

[math] \sin ( \frac34 \pi + x )= \sin \frac{\pi}{2} [/math]


e dunque

[math] \frac34 \pi + x = \frac{ \pi}{2} + 2k \pi [/math]


[math] x= \frac{ \pi}{2} - \frac34 \pi + 2 k \pi [/math]


[math] x= - \frac{\pi}{4} + 2k \pi [/math]


La seconda e' praticamente identica

aleio1
erika basta! E' inutile che apri più topic per farti fare gli esercizi perchè non ti va di farli.

Se non riesci a farli posta il procedimento così si vede dove ti blocchi!

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.