PROBLEMIIII (123966)

SERMATTEI
PROBLEMI DI GEOMETRIA DI 3 MEDIA
problema=

Calcola la misura dei lati e l'area di un trapezio isoscele, sapendo che il perimetro misutra 132 cm , che ciascun lato obliquo è 5/3 della base minore e che la base maggiore è tripla della base minore . calcola inoltre il permetro di un rettangolo ecquibvalente al trapezio , sapendo che la sua base è 3/2 dell'altezza.

Risposte
Max 2433/BO
Allora come sai il perimetro del trapezio isoscele equivale alla somma dei due lati obliqui (lo), della base maggiore (bM) e della base minore (bm):

P = 2lo + bM + bm = 132 cm

Ora, noi, di lo e bM conosciamo solo il rapporto rispetto alla base minore, per cui, se li rappresentassimo tutti come segmenti, otterremo le seguenti relazioni:

bm = |- - -| = 3 unità

lo = 5/3 di bm = |- - - - -| = 5 unità

bM = 3 volte bm = |- - - - - - - - -| = 9 unità

Con questa rappresentazione possiamo scrivere il perimetro nella seguente maniera:

P = 2 x (5 unità) + 9 unità + 3 unità = 22 unità = 132 cm

... a questo punto ti puoi ricavare il valore relativo ad una unità, e di conseguenza la misura di tutti i lati.

Ora, per calcolarti l'area del tuo trapezio, dovrai prima ricavare il valore dell'altezza.

Per fare ciò non dovrai fare altro che applicare il t. di pitagora tra il lato obliquo e la semidifferenza tra le due basi (... per intenderci la metà della differenza tra bM e bm).

Ottenuto anche il valore dell'altezza ti basterà utilizzare la formula classica dell'area del trapezio che troverai sicuramente sul tuo quaderno o su tuo libro di testo.

Per la seconda parte del problema agisci così:

Sai che il rettangolo è equivalente al trapezio, cioè hanno entrambi la stessa area:

Area trapezio = Area rettangolo = b x h

dove

b è la base del rettangolo

h è l'altezza del rettangolo

Anche in questo caso hai i rapporti tra i lati, per cui puoi agire come prima rappresentandoli come segmenti:

h = |- -| = 2 unità

b = 3/2 di h = |- - -| = 3 unità

da cui l'area risulterà:

Area trapezio = Area rettangolo = 2 unità x 3 unità = 6 unità quadrate

Ora puoi ricavare quanto vale una unità quadrata e, di conseguenza, estraendone la radice quadrata, quanto vale la misura di una singola unità.

Ottenuto il valore di quella singola unità ti potrai calcolare i valori di b e h e quindi del perimetro del tuo rettangolo.

Ecco a te.

:hi

Massimiliano

Questa discussione è stata chiusa