Calcolare le incognite
x /y=5/ 9 con x+y=84 e poi
x:y=15:7 con x+y = 66
(17-x):x=45:6 e l'ultima
(45-x):5=x:4
un grazie infinito a chi mi spiega come risolverle
x:y=15:7 con x+y = 66
(17-x):x=45:6 e l'ultima
(45-x):5=x:4
un grazie infinito a chi mi spiega come risolverle
Risposte
(x+y):y=(5+9):9
84:y=14:9
y=84per9:14=54
x:54=5:9
x=54per5:9=30
infatti 30:54=0,5555555... 5:9=0.55555555555....
poi
(17-x+x):x=45:6
17:x=45:6
x=17per6:45=2,26 con 6 periodico
ho visto ke volevi solo la spiegazione per questo nn te le ho fatte tutte percui se nn hai capito me lo dici ti faccio anke le altre, ma ti consiglio di provare ad applicare lo stesso procedimento alle altre!
ciao!
Nada
84:y=14:9
y=84per9:14=54
x:54=5:9
x=54per5:9=30
infatti 30:54=0,5555555... 5:9=0.55555555555....
poi
(17-x+x):x=45:6
17:x=45:6
x=17per6:45=2,26 con 6 periodico
ho visto ke volevi solo la spiegazione per questo nn te le ho fatte tutte percui se nn hai capito me lo dici ti faccio anke le altre, ma ti consiglio di provare ad applicare lo stesso procedimento alle altre!
ciao!
Nada
Io invece avrei proceduto così:
altro non è che una proporzione, per cui possiamo scriverla anche così:
nelle proporzioni sappiamo che il prodotto dei medi è uguale al prodotto degli estremi, quindi:
e da questa ci possiamo ricavare, ad esempio, il valore di x in funzione di y:
Adesso prendiamo l'altra relazione
moltiplichiamo tutti i membri per 9 così eliminiamo il denominatore:
Così abbiamo trovato il valore di y, adesso riprendiamo l'espressione
... seguendo la stessa procedura e cambiando solo i numeri puoi risolvere tranquillamente anche il secondo problema.
Il terzo e quarto problema parti direttamente da una proporzione con una sola incognita da trovare, per cui basta ricordarti sempre che il prodotto dei medi è uguale al prodotto degli estremi e procedere con le operazioni.
Ti faccio vedere come procedere per il terzo problema, e lascio a te il quarto:
facciamo il prodotto dei medi e degli estremi ed eguagliamoli
trasportiamo -6x a destra dell'uguale cambiandogli di segno
Quindi il valore di x sarà pari a 2.
Per il quarto problema usa questo stesso procedimento.
:hi
Massimiliano
[math] \frac {x}{y}\;=\;\frac {5}{9} [/math]
altro non è che una proporzione, per cui possiamo scriverla anche così:
[math] x\;:\;y\;=\;5\;:\;9 [/math]
nelle proporzioni sappiamo che il prodotto dei medi è uguale al prodotto degli estremi, quindi:
[math] 9x \;=\; 5y [/math]
e da questa ci possiamo ricavare, ad esempio, il valore di x in funzione di y:
[math] x \;=\; \frac {5}{9}y [/math]
Adesso prendiamo l'altra relazione
[math] x\;+\;y\;=\;84 [/math]
e sostituiamo ad x l'espressione appena trovata:[math] \frac {5}{9}y \;+\; y \;=\; 84 [/math]
moltiplichiamo tutti i membri per 9 così eliminiamo il denominatore:
[math] 5y\;+\;9y\;=\;756 [/math]
[math] 14y\;=\;756 [/math]
[math] y\;=\;\frac {756}{14}\;=\;54 [/math]
Così abbiamo trovato il valore di y, adesso riprendiamo l'espressione
[math] x \;=\; \frac {5}{9}y [/math]
e calcoliamo anche il valore di x:[math] x \;=\; \frac {5}{9}y \;=\; \frac {5}{9}\;.\;54 \;=\; 30 [/math]
... seguendo la stessa procedura e cambiando solo i numeri puoi risolvere tranquillamente anche il secondo problema.
Il terzo e quarto problema parti direttamente da una proporzione con una sola incognita da trovare, per cui basta ricordarti sempre che il prodotto dei medi è uguale al prodotto degli estremi e procedere con le operazioni.
Ti faccio vedere come procedere per il terzo problema, e lascio a te il quarto:
[math] (17\;-\;x)\;:\;x\;=\;45\;:\;6 [/math]
facciamo il prodotto dei medi e degli estremi ed eguagliamoli
[math] 6(17\;-\;x)\;=\;45x [/math]
[math] 102\;-\;6x\;=\;45x [/math]
trasportiamo -6x a destra dell'uguale cambiandogli di segno
[math] 102\;=\;45x\;+\;6x [/math]
[math] 102\;=\;51x [/math]
[math] x\;=\;\frac {102}{51}\;=\; 2 [/math]
Quindi il valore di x sarà pari a 2.
Per il quarto problema usa questo stesso procedimento.
:hi
Massimiliano