Aiuto mi risolvete questi problemi vi scongiuro

StarsOsQuiero
1)Determina la lunghezza dell'apotema di una piramide regolare quadrangolare che ha l'area di base di 441cm e l'altezza lunga 14cm. Risultato=56,25dm 2)Una piramide regolare triangolare ha il lato della base lungo 12cm e lo spigolo laterale 10cm.Determina la misura del suo apotema. Risultato=8cm

Risposte
strangegirl97
Primo problema
Il problema dice che la piramide è regolare quadrangolare, perciò la base ha la forma di un quadrato. Calcoliamo la misura del suo lato:
[math]l = \sqrt{A_b} = \sqrt{441} = 21\;cm[/math]


Per calcolare la misura dell'apotema della piramide bisogna applicare il teorema di Pitagora. Questo perché l'apotema si può considerare come l'ipotenusa di un triangolo rettangolo avente come cateti l'altezza (14 cm) e l'apotema di base (che nel quadrato misura la metà del lato, perciò 10,5 cm).
[math]a = \sqrt{h^2 + r^2} = \sqrt{14^2 + 10,5^2} = \sqrt{196 + 110,25} = \sqrt{306,25} = 17,5\;cm[/math]


Devi aver sbagliato a copiare il risultato, anche perché lì l'unità di misura è il centimetro quadrato! ;) :)

Secondo problema
In questo caso l'apotema è il cateto maggiore di un triangolo rettangolo che ha come cateto minore la metà dello spigolo di base e come ipotenusa lo spigolo laterale. Quindi, per Pitagora:
[math]a = \sqrt{s^2 - (\frac{l} {2})^2} = \sqrt{10^2 - (\frac{\no{12}^6} {\no2^1})^2} = \sqrt{100 - 36} = \sqrt{64} = 8\;cm[/math]

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.