Indovinello Cantoriano
Pubblico questo "indovinello" con il permesso di un collega che me l'ha raccontato in questi giorni. Spero di
non ripetere qualcosa di già noto (io non lo conoscevo e mi ha divertito parecchio). Ovviamente per risolverlo
bisogna avere dimestichezza con l'infinito.
In una dependance dell'albergo di Cantor alloggiano due professori (scapoli), uno di matematica e l'altro di lettere.
Entrambi si fidano poco delle banche per cui, ogni mese ritirano lo stipendio in contanti (tutto in biglietti
da cinquanta euro) e lo tengono con loro.
Sono anche un po' sciatti e hanno la curiosa abitudine di tenere i soldi in una pila su un angolo del tavolo del
loro studio - ogni volta che riscuotono la paga mettono il denaro ricevuto ben allineato sopra la pila.
Il matematico è uno scialaquatore e ogni mese preleva dalla sua pila esattamente quanto ha ricevuto di stipendio -
l'unica eccezione è che quando gli arriva la tredicesima spende tutto tranne un biglietto da cinquanta.
Il letterato è un uomo previdente e ogni mese spende l'ammontare del suo stipendio meno un biglietto da cinquanta euro -
va da sé che lui a Natale fa nessuna spesa straordinaria.
Come noto gli ospiti dell'albergo di Cantor vivono in eterno. Dopo Aleph Zero anni i due si incontrano e scoprono
che il letterato non ha più un euro, mentre il matematico è infinitamente ricco!
Come si può spiegare questo ?
non ripetere qualcosa di già noto (io non lo conoscevo e mi ha divertito parecchio). Ovviamente per risolverlo
bisogna avere dimestichezza con l'infinito.
In una dependance dell'albergo di Cantor alloggiano due professori (scapoli), uno di matematica e l'altro di lettere.
Entrambi si fidano poco delle banche per cui, ogni mese ritirano lo stipendio in contanti (tutto in biglietti
da cinquanta euro) e lo tengono con loro.
Sono anche un po' sciatti e hanno la curiosa abitudine di tenere i soldi in una pila su un angolo del tavolo del
loro studio - ogni volta che riscuotono la paga mettono il denaro ricevuto ben allineato sopra la pila.
Il matematico è uno scialaquatore e ogni mese preleva dalla sua pila esattamente quanto ha ricevuto di stipendio -
l'unica eccezione è che quando gli arriva la tredicesima spende tutto tranne un biglietto da cinquanta.
Il letterato è un uomo previdente e ogni mese spende l'ammontare del suo stipendio meno un biglietto da cinquanta euro -
va da sé che lui a Natale fa nessuna spesa straordinaria.
Come noto gli ospiti dell'albergo di Cantor vivono in eterno. Dopo Aleph Zero anni i due si incontrano e scoprono
che il letterato non ha più un euro, mentre il matematico è infinitamente ricco!
Come si può spiegare questo ?
Risposte
Mi viene in mente solo che il matematico abbia sottratto i soldi al letterato in qualche modo...
"maxsiviero":
Mi viene in mente solo che il matematico abbia sottratto i soldi al letterato in qualche modo...
Sarebbe troppo facile

P.S. Nel messaggio originario credo avrei dovuto scrivere "albergo di Hilbert"
trovata: il letterato si è sposato, il matematico no.

Il paradosso dell'albergo di Hilbert c'entra in qualche modo?
"blackbishop13":
trovata: il letterato si è sposato, il matematico no.
Questa è veramente bella




"maxsiviero":
Mi viene in mente solo che il matematico abbia sottratto i soldi al letterato in qualche modo...
"blackbishop13":Adoro il pensiero laterale
Trovata: il letterato si è sposato, il matematico no.

(Ad ogni modo, non rispondo perchè lo conoscevo già... anche se in una versione un pò più "matematica"

"maxsiviero":
Il paradosso dell'albergo di Hilbert c'entra in qualche modo?
È della stessa razza. Tenete presente che è un indovinello e che quindi ci vuole un po di immaginazione (ma il matrimonio non c entra)
C'è per caso un trabocchetto semantico nel testo?
Altrimenti, l'unica cosa che mi viene in mente è che il letterato non riesca più ad arrivare alla cima della pila (ma come faceva a metterci lo stipendio?) mentre il matematico si.
Altrimenti, l'unica cosa che mi viene in mente è che il letterato non riesca più ad arrivare alla cima della pila (ma come faceva a metterci lo stipendio?) mentre il matematico si.
"Rggb":
C'è per caso un trabocchetto semantico nel testo?
Altrimenti, l'unica cosa che mi viene in mente è che il letterato non riesca più ad arrivare alla cima della pila (ma come faceva a metterci lo stipendio?) mentre il matematico si.
Secondo me il trabochetto semantico potrebbe essere questo:
Il matematico "preleva dalla sua pila esattamente quanto ha ricevuto di stipendio" quindi una volta andato in pensione o comunque se non dovesse più "ricevere" lo stipendio lui ridurrebbe o fermerebbe la sua spesa.
Il letterato "spende l'ammontare del suo stipendio meno..." quindi si potrebbe pensare che lui continui a spendere ogni mese "l'ammontare del suo stipendio" anche quando questo non dovesse più esserci.
Che ne dite?
secondo me non funziona:
ammettiamo che ad un certo punto della sua vita il letterato vada in pensione: allora dal testo deduciamo che dopo un certo periodo di tempo non solo ha finito i soldi che aveva guadagnato, ma ha infiniti euro di debito. comunque non è questa l'obiezione.
se il letterato va in pensione, è molto ragionevole pensare che ci vada anche il matematico: perciò anche lui ad un certo punto smette di guadagnare.
ora sappiamo che il suo unico gudadgno è di 50 euro all'anno quando lavora, siccome:
"quando gli arriva la tredicesima spende tutto tranne un biglietto da cinquanta"
ma se la tredicesima non arriva più cosa succede? sono ugualmente possibili due casi:
o continua (non si sa come) a mettere da parte 50 euro all'anno,
oppure (e mi pare il caso più ragionevole) smette di guadagnare. quindi si ritrova, comunque sia, con un ammontare finito di soldi, contrariamente a quanto affermato dal testo.
quindi la soluzione non è univoca, perciò non va bene.
ammettiamo che ad un certo punto della sua vita il letterato vada in pensione: allora dal testo deduciamo che dopo un certo periodo di tempo non solo ha finito i soldi che aveva guadagnato, ma ha infiniti euro di debito. comunque non è questa l'obiezione.
se il letterato va in pensione, è molto ragionevole pensare che ci vada anche il matematico: perciò anche lui ad un certo punto smette di guadagnare.
ora sappiamo che il suo unico gudadgno è di 50 euro all'anno quando lavora, siccome:
"quando gli arriva la tredicesima spende tutto tranne un biglietto da cinquanta"
ma se la tredicesima non arriva più cosa succede? sono ugualmente possibili due casi:
o continua (non si sa come) a mettere da parte 50 euro all'anno,
oppure (e mi pare il caso più ragionevole) smette di guadagnare. quindi si ritrova, comunque sia, con un ammontare finito di soldi, contrariamente a quanto affermato dal testo.
quindi la soluzione non è univoca, perciò non va bene.
Dato che prevedo obiezioni aggiungo alcune precisazioni.
L'indovinello non è un problema e quindi non c'é "la soluzione". Bisogna immaginare in cosa le azioni dei due personaggi differiscano in modo da portare al risultato indicato. La risposta
però ha un contenuto matematico. Non c'è un "trucco" semantico, ma in effetti ho cercato di formulare il problema coerentemente con la risposta e quindi il modo leggermente diverso in cui sono descritti i comportamenti dei due protagonisti potrebbe (alla lontana) dare un suggerimento. I due non vanno MAI in pensione.
L'indovinello non è un problema e quindi non c'é "la soluzione". Bisogna immaginare in cosa le azioni dei due personaggi differiscano in modo da portare al risultato indicato. La risposta
però ha un contenuto matematico. Non c'è un "trucco" semantico, ma in effetti ho cercato di formulare il problema coerentemente con la risposta e quindi il modo leggermente diverso in cui sono descritti i comportamenti dei due protagonisti potrebbe (alla lontana) dare un suggerimento. I due non vanno MAI in pensione.
La domanda l'ho fatta solo per scrupolo. Sono dell'idea che l'abitudine della pila di soldi sia la chiave. Però, un commento:
Allora sono italiani!
"ViciousGoblin":
I due non vanno MAI in pensione.
Allora sono italiani!

"ViciousGoblin":
il letterato non ha più un euro, mentre il matematico è infinitamente ricco!
Sul fatto che il matematico sia infinitamente ricco, non ci sono dubbi.
Dato che ogni anno guadagna 50 euro, è ovvio che dopo infiniti anni abbia infiniti euro.
Il problema riguarda il letterato: propongo una soluzione "elementare".
Secondo me l'affermazione "Il letterato non ha più un euro"
va intesa non nel senso tradizionale , che sarebbe "Il letterato è senza soldi",
ma nel senso letterale, ovvero "il letterato possiede una quantità di euro diversa da 1"
E anche questa affermazione è corretta, dato che anche lui dopo infiniti anni avrà infiniti euro.

Che ne dici ViciousGoblin? Sicuramente è un po' forzata come soluzione, ma non vedo altra strada
La pila è importante.
Alla fine il letterato non possiede nessuna banconota.
Alla fine il letterato non possiede nessuna banconota.
"ViciousGoblin":Potrebbe quindi essere che ogni mese subito dopo il ritiro dello stipendio gli viene dato un aumento di 50 euro. Per esempio al mese 1 ha 300 euro di stipendio, dopo averli ritirati il suo stipendio sale a 350 euro e lui durante il mese successivo spende "l'ammontare del suo stipendio meno un biglietto da cinquanta euro", cioè 350-50=300 euro (che sfortunatamente risulta essere tutto quello che ha), poi riceve 350 euro di stipendio e lo stipendio sale a 400, lui spende 400-50=350 eccetera. In questo modo ogni mese spende tutto quello che ha, quindi ogni mese esattamente prima di ritirare lo stipendio non ha nemmeno un soldo. L'inconveniente è che il suo stipendio diventa infinitamente grande
Il letterato è un uomo previdente e ogni mese spende l'ammontare del suo stipendio meno un biglietto da cinquanta euro


Magari il letterato, che come scritto non sostiene mai spese straordinarie a Natale, nell'ultima festività prima di incontrarsi con il matematico si è risentito del suo comportamento, decidendo quindi di recuperare e comprare gli infiniti regali arretrati ad amici e parenti.
Il ragionamento di Martino mi sembra convincente, stavo cercando qualcosa di simile - magari usando la tredicesima per pareggiare, di modo da evitare che lo stipendio aumenti infinitamente.
Però non capisco cosa c'entri la pila... deve essere importante perché c'è una descrizione apposta nell'indovinello ("... hanno la curiosa abitudine di tenere i soldi in una pila su un angolo del tavolo del loro studio - ogni volta che riscuotono la paga mettono il denaro ricevuto ben allineato sopra la pila. ...") e non credo che ViciousGoblin l'abbia scritta in quel modo casualmente.
Però non capisco cosa c'entri la pila... deve essere importante perché c'è una descrizione apposta nell'indovinello ("... hanno la curiosa abitudine di tenere i soldi in una pila su un angolo del tavolo del loro studio - ogni volta che riscuotono la paga mettono il denaro ricevuto ben allineato sopra la pila. ...") e non credo che ViciousGoblin l'abbia scritta in quel modo casualmente.
](/datas/uploads/forum/emoji/eusa_wall.gif)
Vi do un input. Se indichiamo con $m_n$ la quantità di soldi che rimangono al matematico dopo $n$ anni e con $l_n$ la corrispondente quantità del letterato, allora $l_n$ è maggiore di $m_n$ per ogni n ed entrambe tendono all'infinito. Ciò nonostante alla fine dei secoli il matematico ha infiniti biglietti da cinquanta sulla sua pila, mentre il letterato non ne ha nessuno.
Se dici questo vuol dire che è falso il finale, ovvero: anche il letterato ha infiniti biglietti da 50€.
"j18eos":
Se dici noquesto vuol dire che è falso il finale, ovvero: anche il letterato ha infiniti biglietti da 50€.
No, ed è proprio lì il punto. ...