[EX] Solving some ODEs without any integration
Exercise:
1. Let \(\Omega \subseteq \mathbb{R}^2\setminus \{\mathbf{o}\}\) be an open set made up of rays from \(\mathbf{o}=(0,0)\), let \(f,g:\Omega \to \mathbb{R}\) be two smooth \(\alpha\)-homogeneous functions with \(\alpha\neq -1\) and \((x_0,y_0)\in \Omega\) s.t. \(g(x_0,y_0)\neq 0\).
Prove that if:
\[
\tag{1}
f_y (x,y) = g_x (x,y)
\]
in \(\Omega\), then any solution of the Cauchy's problem:
\[
\tag{P}
\begin{cases}
g(x,y(x))\ y^\prime (x) = - f(x,y(x))\\
y(x_0) = y_0
\end{cases}
\]
is implicitly defined by the following equation:
\[
\tag{2}
x\ f(x,y) + y\ g(x,y) = x_0\ f(x_0,y_0) + y_0\ g(x_0 ,y_0)
\]
in a suitable neighbourhood of the initial data \((x_0,y_0)\).
2. Solve:
\[
\tag{3}
\begin{cases}
2x\ y(x)\ y^\prime (x) = x^2 -y^2(x)\\
y(\sqrt{3}) = 1\; .
\end{cases}
\]
1. Let \(\Omega \subseteq \mathbb{R}^2\setminus \{\mathbf{o}\}\) be an open set made up of rays from \(\mathbf{o}=(0,0)\), let \(f,g:\Omega \to \mathbb{R}\) be two smooth \(\alpha\)-homogeneous functions with \(\alpha\neq -1\) and \((x_0,y_0)\in \Omega\) s.t. \(g(x_0,y_0)\neq 0\).
Prove that if:
\[
\tag{1}
f_y (x,y) = g_x (x,y)
\]
in \(\Omega\), then any solution of the Cauchy's problem:
\[
\tag{P}
\begin{cases}
g(x,y(x))\ y^\prime (x) = - f(x,y(x))\\
y(x_0) = y_0
\end{cases}
\]
is implicitly defined by the following equation:
\[
\tag{2}
x\ f(x,y) + y\ g(x,y) = x_0\ f(x_0,y_0) + y_0\ g(x_0 ,y_0)
\]
in a suitable neighbourhood of the initial data \((x_0,y_0)\).
2. Solve:
\[
\tag{3}
\begin{cases}
2x\ y(x)\ y^\prime (x) = x^2 -y^2(x)\\
y(\sqrt{3}) = 1\; .
\end{cases}
\]
Risposte
"gugo82":
1. Let \( \Omega \subseteq \mathbb{R}^2\setminus \{\mathbf{o}\} \) be an open set made up of rays from \( \mathbf{o}=(0,0) \), let \( f,g:\Omega \to \mathbb{R} \) be two smooth \( \alpha \)-homogeneous functions with \( \alpha\neq -1 \) and \( (x_0,y_0)\in \Omega \) s.t. \( g(x_0,y_0)\neq 0 \).
Prove that if:
\[ \tag{1} f_y (x,y) = g_x (x,y) \]
in \( \Omega \), then any solution of the Cauchy's problem:
\[ \tag{P} \begin{cases} g(x,y(x))\ y^\prime (x) = - f(x,y(x))\\ y(x_0) = y_0 \end{cases} \]
is implicitly defined by the following equation:
\[ \tag{2} x\ f(x,y) + y\ g(x,y) = x_0\ f(x_0,y_0) + y_0\ g(x_0 ,y_0) \]
in a suitable neighbourhood of the initial data \( (x_0,y_0) \).
Nice try... That could be a way to solve problem (3) using the classical Frobenius method (a.k.a. method of power series).
There are some passages missing, but nothing you cannot fill by yourself.
Another way consists in using formula (2) from part 1.
Any idea for part 1?
There are some passages missing, but nothing you cannot fill by yourself.
Another way consists in using formula (2) from part 1.
Any idea for part 1?
2) A partial solution.
A) $xyy'=1/2x^2-1/2y^2$
From (A) :
$y'(x)={x^2-y^2}/{2xy}->y'(sqrt 3)={3-1}/{2sqrt3}=1/{sqrt3}$
Deriving (A) :
B) $yy'+x(y')^2+xyy''=x-yy'$
From (B):
$y''(x)={x-2yy'-x(y')^2}/{xy}-> y''(sqrt 3)={sqrt 3-{2}/{sqrt3 }-{sqrt3}/{3}}/{sqrt3 }=0$
Deriving (B) :
C) $(y')^2+yy''+(y')^2+2xy'y''+yy''+xy'y''+xyy'''=1-(y')^2-yy''$
From (C) :
$y'''(x)={1-3(y')^2-3yy''-3xyy''}/{xy}->y'''(sqrt3)={1-3/3-0-0}/{sqrt3}=0$
and so on.
Generalizing (?), result
$y(sqrt3)=1,y'(sqrt 3)=1/{sqrt3}, y^{(i)}(sqrt 3)=0, i>=2$
Then : ${y(x)=x/{\sqrt 3} } $
A) $xyy'=1/2x^2-1/2y^2$
From (A) :
$y'(x)={x^2-y^2}/{2xy}->y'(sqrt 3)={3-1}/{2sqrt3}=1/{sqrt3}$
Deriving (A) :
B) $yy'+x(y')^2+xyy''=x-yy'$
From (B):
$y''(x)={x-2yy'-x(y')^2}/{xy}-> y''(sqrt 3)={sqrt 3-{2}/{sqrt3 }-{sqrt3}/{3}}/{sqrt3 }=0$
Deriving (B) :
C) $(y')^2+yy''+(y')^2+2xy'y''+yy''+xy'y''+xyy'''=1-(y')^2-yy''$
From (C) :
$y'''(x)={1-3(y')^2-3yy''-3xyy''}/{xy}->y'''(sqrt3)={1-3/3-0-0}/{sqrt3}=0$
and so on.
Generalizing (?), result
$y(sqrt3)=1,y'(sqrt 3)=1/{sqrt3}, y^{(i)}(sqrt 3)=0, i>=2$
Then : ${y(x)=x/{\sqrt 3} } $