[EX] Solving some ODEs without any integration

gugo82
Exercise:

1. Let \(\Omega \subseteq \mathbb{R}^2\setminus \{\mathbf{o}\}\) be an open set made up of rays from \(\mathbf{o}=(0,0)\), let \(f,g:\Omega \to \mathbb{R}\) be two smooth \(\alpha\)-homogeneous functions with \(\alpha\neq -1\) and \((x_0,y_0)\in \Omega\) s.t. \(g(x_0,y_0)\neq 0\).
Prove that if:
\[
\tag{1}
f_y (x,y) = g_x (x,y)
\]
in \(\Omega\), then any solution of the Cauchy's problem:
\[
\tag{P}
\begin{cases}
g(x,y(x))\ y^\prime (x) = - f(x,y(x))\\
y(x_0) = y_0
\end{cases}
\]
is implicitly defined by the following equation:
\[
\tag{2}
x\ f(x,y) + y\ g(x,y) = x_0\ f(x_0,y_0) + y_0\ g(x_0 ,y_0)
\]
in a suitable neighbourhood of the initial data \((x_0,y_0)\).

2. Solve:
\[
\tag{3}
\begin{cases}
2x\ y(x)\ y^\prime (x) = x^2 -y^2(x)\\
y(\sqrt{3}) = 1\; .
\end{cases}
\]

Risposte
gugo82
"gugo82":
1. Let \( \Omega \subseteq \mathbb{R}^2\setminus \{\mathbf{o}\} \) be an open set made up of rays from \( \mathbf{o}=(0,0) \), let \( f,g:\Omega \to \mathbb{R} \) be two smooth \( \alpha \)-homogeneous functions with \( \alpha\neq -1 \) and \( (x_0,y_0)\in \Omega \) s.t. \( g(x_0,y_0)\neq 0 \).
Prove that if:
\[ \tag{1} f_y (x,y) = g_x (x,y) \]
in \( \Omega \), then any solution of the Cauchy's problem:
\[ \tag{P} \begin{cases} g(x,y(x))\ y^\prime (x) = - f(x,y(x))\\ y(x_0) = y_0 \end{cases} \]
is implicitly defined by the following equation:
\[ \tag{2} x\ f(x,y) + y\ g(x,y) = x_0\ f(x_0,y_0) + y_0\ g(x_0 ,y_0) \]
in a suitable neighbourhood of the initial data \( (x_0,y_0) \).


gugo82
Nice try... That could be a way to solve problem (3) using the classical Frobenius method (a.k.a. method of power series).
There are some passages missing, but nothing you cannot fill by yourself.

Another way consists in using formula (2) from part 1.


Any idea for part 1?

Sk_Anonymous
2) A partial solution.
A) $xyy'=1/2x^2-1/2y^2$
From (A) :
$y'(x)={x^2-y^2}/{2xy}->y'(sqrt 3)={3-1}/{2sqrt3}=1/{sqrt3}$
Deriving (A) :
B) $yy'+x(y')^2+xyy''=x-yy'$
From (B):
$y''(x)={x-2yy'-x(y')^2}/{xy}-> y''(sqrt 3)={sqrt 3-{2}/{sqrt3 }-{sqrt3}/{3}}/{sqrt3 }=0$
Deriving (B) :
C) $(y')^2+yy''+(y')^2+2xy'y''+yy''+xy'y''+xyy'''=1-(y')^2-yy''$
From (C) :
$y'''(x)={1-3(y')^2-3yy''-3xyy''}/{xy}->y'''(sqrt3)={1-3/3-0-0}/{sqrt3}=0$
and so on.
Generalizing (?), result
$y(sqrt3)=1,y'(sqrt 3)=1/{sqrt3}, y^{(i)}(sqrt 3)=0, i>=2$
Then : ${y(x)=x/{\sqrt 3} } $

Rispondi
Per rispondere a questa discussione devi prima effettuare il login.